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SimpleMKKM: Simple Multiple Kernel K-means
Xinwang Liu, Li Liu, Jian Xiong, En Zhu, Junwei Han, Meng Wang, Dinggang Shen, and Wen Gao

Abstract—We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means
(SimpleMKKM). It extends the widely used supervised kernel alignment criterion to multi-kernel clustering. Our criterion is given by an
intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix. To optimize it, we re-formulate
the problem as a smooth minimization one, which can be solved efficiently using a reduced gradient descent algorithm. We
theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error. Furthermore, we develop
comprehensive experiments to study the proposed SimpleMKKM from the perspective of clustering accuracy, advantage on the
formulation and optimization, evolution of the learned consensus clustering matrix, clustering with number of sample, clustering with
number of base kernels, the learned kernel weight analysis, the running time and convergence. As indicated, our algorithm delivers its
effectiveness by significantly and consistently outperforming state of the art multiple kernel clustering alternatives. Our work provides a
more effective approach to fuse multi-view data for clustering, which could trigger novel research on multiple kernel clustering. Our
codes and data are publicly available at https://xinwangliu.github.io/.

Index Terms—multiple kernel clustering, multiple view learning, kernel alignment maximization
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1 INTRODUCTION

IN Multi-view clustering (MVC) [1], we aim to combine a
set of pre-specified kernel matrices to improve clustering

performance. These kernel matrices could encode heteroge-
neous sources or views of the data [2], [3], [4]. One popular
method, multiple kernel k-means (MKKM) [5], has been
studied intensively and used in various applications [2], [6],
[7], [8], [9], [10], [11]. The approach is attractive also from a
theoretical perspective, as it unifies the search of the optimal
base kernel coefficient and the clustering partition matrix
into a single objective function, which is usually solved by
using two-step alternating optimization on the coefficients
and clustering partition matrix.

Several variants of MKKM have been developed to
further improve the clustering performance [2], [6], [12],
[13], [14]. Notably, [6] substantially increases the expressive-
ness of MKKM by allowing for a locally adaptive kernel
mixtures, which can better capture sample-specific charac-
teristics of data. [12] proposes an extension that optimizes
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a localized kernel alignment criterion. It aligns the local
density of the samples given by the k-nearest neighbours
with an ideal similarity matrix. This alignment helps to
keep neighbouring sample pairs together, which avoids
unreliable similarity evaluation. Such an alignment helps
the clustering algorithm to focus on neighboring sample
pairs, in that they shall stay together. This avoids unreliable
similarity evaluation for farther sample pairs. Observing
that existing MKKM algorithms do not sufficiently consider
the correlation among these kernels, [13] employs matrix
regularization to reduce the redundancy and enhance the
diversity of the selected kernels. Most of existing MKKM
algorithms assume that the optimal kernel is a linear com-
bination of a group of base kernels. This assumption is
challenged in [14], who proposes an optimal neighbor-
hood kernel clustering (ONKC) algorithm to enhance the
representability of the optimal kernel and strengthen the
negotiation between kernel learning and clustering. More
recently, MKKM algorithms have been extended to handle
missing views [15]. By assuming the optimal kernel is a
linear combination of the base kernel matrices, [16] develop
a minimization-maximization framework that aims to be
robust to adversarial perturbation. More recently, many
work has been devoted to extend existing MKKM to handle
multiple kernel clustering with incomplete kernels [15], [17],
[18], [19]. All these variants potentially improve standard
MKKM and achieve promising clustering performance in
various applications.

The objective functions of the mentioned methods differ,
but they all share one commonality: they learn the kernel
coefficient and the clustering partition matrix jointly. By this
way, the leaned kernel coefficient can best serve the cluster-
ing, leading to superior clustering performance. However,
simultaneously solving for the kernel coefficients and the
clustering partition is intractable. One commonly adopted
remedy is to decouple the optimization of the kernel coef-
ficients and the clustering partition through a block coordi-
nate descent algorithm, which optimizes the two alternately.

https://xinwangliu.github.io/
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This means, one block of variables is minimized while the
other is kept fixed. However, such alternate optimization
algorithms can get trapped into a local optima of the objec-
tive function. As a remedy, [12], [13] propose regularization
strategies to avoid getting trapped into local minimum.
The incorporation of these regularization terms comes at a
price: the approach has additional hyper-parameters, which
are difficult to select, given the unsupervised nature of
clustering tasks.

In this paper, we propose Simple MKKM
(SimpleMKKM)–a novel formulation for multiple kernel
clustering that addresses the aforementioned shortcomings.
Unlike previous approaches, SimpleMKKM optimizes
the unsupervised kernel alignment criterion directly.
Specifically, it minimizes kernel alignment with respect
to the kernel coefficient and maximizes it with respect
to the clustering matrix. This minimization-maximization
optimization problem cannot readily be solved using
existing alternate optimization frameworks. However,
we show that this min-max problem actually leads to
a more efficient and effective optimization algorithm.
Specifically, we reformulate the min-max problem as
a minimization problem, whose objective relies on the
known optimal solution to kernel k-means. We then prove
the differentiability of the optimal value function and
calculate its reduced gradient. This leads to a solution
using a reduced gradient descent algorithm, without
alternating optimization. We show a generalization error
bound for our approach, thus theoretically guaranteeing
its clustering performance. We conduct comprehensive
experiments on eleven benchmark datasets, where we
compare SimpleMKKM to eight baseline methods in
terms of four common evaluation criteria. We observe that
SimpleMKKM consistently outperforms its competitors.
Moreover, we conduct extra experimental study from
the following aspects: advantage on the formulation and
optimization, evolution of the learned consensus clustering
matrix, clustering with number of sample, clustering with
number of base kernels, the learned kernel weight analysis,
the running time and convergence.

We end up this section by summarizing the main contri-
butions of this paper as follows:

• We develop a simple while effective criterion for
multiple kernel clustering, which is given by an
intractable minimization-maximization. The problem
is reformulated as a smooth minimization, which can
be solved efficiently using reduced gradient descent.

• We theoretically analyze the performance of Sim-
pleMKKM in terms of its clustering generalization
error on test data.

• We conduct comprehensive experiments to validate
the effectiveness of the proposed algorithm.

In addition, the proposed SimpleMKKM is parameter-free,
making it readily applicable in practice. More importantly,
SimpleMKKM can be taken as a strong baseline to trigger
new research on multiple kernel clustering.

2 RELATED WORK

In this section, we briefly review the most related, includ-
ing multiple kernel k-means (MKKM) and robust MKKM

clustering using min-max optimization [16].

2.1 MKKM

Given a group of pre-calculated kernel matrices {Kp}mp=1,
MKKM assumes that the optimal kernel matrix Kγ can
be parameterized as Kγ =

∑m
p=1 γ

2
pKp, where γ ∈ ∆ =

{γ ∈ Rm|
∑m
p=1 γp = 1, γp ≥ 0, ∀p} represents the kernel

weights of these base kernel matrices. It jointly learns the
kernel weights γ and the clustering partition matrix H by
optimizing Eq. (1).

minγ∈∆ minH Tr
(
Kγ(I−HH>)

)
s.t. H ∈ Rn×k, H>H = Ik.

(1)

In literature, the optimization problem in Eq. (1) is
usually be solved by alternatively updating H and γ: (i)
Optimizing H given γ. With the kernel coefficients γ fixed,
H can be obtained by solving a kernel k-means clustering
optimization problem; (ii) Optimizing γ given H. With
H fixed, γ can be optimized via solving the following
quadratic programming with linear constraints,

minγ∈∆

∑m

p=1
γ2
pTr

(
Kp(In −HH>)

)
, (2)

which has a closed-form solution.
As noted in [2], [6], using a convex combination of

kernels
∑m
p=1 γpKp to replace

∑m
p=1 γ

2
pKp is not a viable

option, because this could make only one single kernel
activate and all the others assigned with zero weight, as seen
from Eq. (2). Other recent work using `2-norm combinations
can be found in [15], [20], [21].

2.2 Robust MKKM Using Min-Max Optimization

Recently, [16] proposed a MKKM clustering method with
the aim to be robust against adversarial perturbation. To
achieve this goal, the authors use a minH-maxγ formulation
that combines views so as to achieve high within-cluster
variance in the combined space Wγ and then updates clus-
ters by minimizing such variance. Its optimization problem
is,

minH maxγ∈Θ Tr
(
Wγ(I−HH>)

)
s.t. H ∈ Rn×k, H>H = Ik,

(3)

where Θ = {γ ∈ Rm|
∑m
p=1 γ

2
p ≤ 1, γp ≥ 0, ∀p} and Wγ =∑m

p=1 γpKp.
Note that in contrast to Eq. (1), the above approach

adopts an `2-norm constraint on the kernel weights to
avoid sparse solutions. It is observed that using an `2-norm
constraint can obtain non-sparse kernel coefficients, which
is helpful to better utilize the complementary information
in the data. Similar to MKKM, the problem in Eq. (3) can
be solved by following the same alternate optimization
framework.

Although the objective functions of MKKM and its vari-
ants may vary, they share a common alternate optimiza-
tion routine. The aforementioned alternate framework could
cause the optimization w.r.t γ to produce high redundant or
overly sparse solutions [13]. This in turn would make the
multiple kernel matrices less utilized, and adversely affects
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the clustering performance. A direct remedy is to incor-
porate some regularization on γ to help its optimization
[12], [13]. However, the incorporation of regularization may
introduce extra hyper-parameters. How to determine those
in unsupervised learning tasks such as clustering is difficult.
In the following, we introduce our simple MKKM objective,
and design a novel optimization procedure for it that avoids
these issues.

3 SIMPLEMKKM: SIMPLE MKKM
In this section, we first give the proposed SimpleMKKM
kernel alignment-based objective. We then reformulate it as
the minimization of an optimal value function, and prove its
differentiability. After that, we develop a reduced gradient
descent algorithm to solve it efficiently and effectively.

3.1 SimpleMKKM Formulation
Kernel alignment criterion has been widely used for kernel
tuning in supervised learning due to its simplicity and effec-
tiveness [22], [23]. Our new formulation is based on unsu-
pervised multiple kernel alignment criterion, inspired by ex-
isting supervised kernel learning. One can optimize this cri-
terion by maximizing over both γ and H. Though theoreti-
cally elegant, we empirically observe that such maxγ maxH

formulation does not achieve promising clustering perfor-
mance, which is different from supervised kernel learning.
We conjecture this is caused by the over-fitted optimization
between γ and H. On the other hand, from the optimization
perspective of MKKM in Eq. (1), Tr

(
Kγ(I−HH>)

)
should

be minimized. This objective can be decomposed into two
terms, Tr (Kγ) and −Tr

(
KγHH>

)
. The first term can be

regarded as regularization on γ, which should be optimized
via minimizing γ. The other one is the opposite of kernel
alignment, which should be minimized via maximizing H.
By taking both regularisation and partitioning into account,
our SimpleMKKM proposes to optimize the kernel align-
ment criterion by minimizing γ and maximizing H as:

minγ∈∆ maxH Tr
(
KγHH>

)
s.t. H ∈ Rn×k, H>H = Ik,

(4)

where ∆ = {γ ∈ Rm|
∑m
p=1 γp = 1, γp ≥ 0, ∀p} and Kγ =∑m

p=1 γ
2
pKp.

Though simple, the SimpleMKKM formulation in Eq. (4)
has the following merits: (1) It is the first MKKM objective
that, strictly coincides with the kernel alignment criterion vi-
a Tr

(
KγHH>

)
to tune kernel weights. In contrast, MKKM

and its all variants adopt Tr
(
Kγ(I−HH>)

)
as the crite-

rion by extending the objective of classic kernel k-means to
multiple kernels. It is worth noting that the kernel alignment
criterion is more general and can be used for any kernel
tuning tasks. As a result, it can be used for multiple kernel
clustering. (2) According to [16], regularisation by min-max
optimization of γ and H generates more robust clusters by
avoiding overfitting to noisy views or datapoints. (3) As
we shall see next, while our formulation looks intractible, it
actually leads to a more efficient and effective optimisation
algorithm than the standard alternating strategies used for
MKKM. Furthermore, unlike alternatives [12], [13] relying
on regularisation by penalizing γ, SimpleMKKM introduces

no additional parameters beyond the number of clusters to
form.

Our new formulation in Eq. (4) cannot be readily solved
by the widely adopted alternate optimization strategy, as
done in MKKM and its variants. In the following, we
design an efficient and effective reduced gradient descent
algorithm. Firstly, we equivalently rewrite the optimization
in Eq. (4) as,

minγ∈∆ J (γ), (5)

with

J (γ) =
{

maxH Tr
(
KγHH>

)
s.t. H>H = Ik

}
. (6)

In this way, the min-max optimization is transformed to a
minimization one, where its objective is a kernel k-means
optimal value function. In the following, we first prove the
differentiability of J (γ), and apply the reduced gradient
descent algorithm to decrease Eq. (5).

3.2 The Calculation of Reduced Gradient
In the literature, several works discuss the existence and
computation of derivatives of optimal value functions J (γ)
[24], [25], [26]. The most appropriate reference for our case is
Theorem 4.1 in [24], which has already been utilized to tune
the hyper-parameters of SVM [25] and optimize the kernel
weights in multiple kernel learning [26]. The following
Theorem 1 shows that J (γ) in Eq. (5) is differentiable.

Theorem 1. J (γ) in Eq. (6) is differentiable. Fur-
ther, ∂J (γ)

∂γp
= 2γpTr

(
KpH

∗H∗>
)

, where H∗ ={
arg maxH Tr

(
KγHH>

)
s.t. H>H = Ik

}
.

Proof. For any given γ ∈ ∆, the maximum of optimization
problem maxH Tr

(
KγHH>

)
s.t. H>H = Ik is uniqe,

with H̃∗ ∈ {H̃∗|H̃∗ = H∗U, UU> = U>U = Ik}
the corresponding maximizer. According to Theorem 4.1
in [24], J (γ) in Eq. (6) is differentiable, and ∂J (γ)

∂γp
=

2γpTr(KpH̃
∗(H̃∗)>) = 2γpTr(KpH

∗H∗>).

3.3 The Optimization Algorithm
We propose to solve the optimization in Eq. (5) with re-
duced gradient descent algorithms. We firstly calculate the
gradient of J (γ) according to Theorem 1, and then update
γ with a descent direction by which the equality and non-
negativity constraints on γ can be guaranteed.

To fulfill this goal, we firstly handle the equality con-
straint by computing the reduced gradient by following [26].
Let γu be a non-zero component of γ and5J (γ) denote the
reduced gradient of J (γ). The p-th (1 ≤ p ≤ m) element of
5J (γ) is

[5J (γ)]p =
∂J (γ)

∂γp
− ∂J (γ)

∂γu
∀ p 6= u, (7)

and

[5J (γ)]u =
∑m

p=1,p6=u

(
∂J (γ)

∂γu
− ∂J (γ)

∂γp

)
(8)

Following the suggestion in [26], we choose u to be the index
of the largest component of vector γ which is considered to
provide better numerical stability.
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We then take the positivity constraints on γ into con-
sideration in the descent direction. Note that − 5 J (γ)
is a descent direction since our aim is to minimize J (γ).
However, directly using this direction would violate the
positivity constraints in the case that if there is an index
p such that γp = 0 and [5J (γ)]p > 0. In such case, the
descent direction for that component should be set to 0. This
gives the descent direction for updating γ as

dp =


0 if γp = 0 and [5J (γ)]p > 0

− [5J (γ)]p if γp > 0 and p 6= u

− [5J (γ)]u if p = u.

(9)

After a descent direction d = [d1, · · · , dm]> is computed
by Eq. (9), γ can be calculated via the updating scheme
γ ← γ + αd, where α is the optimal step size. It can be
selected by a one-dimensional line search strategy such as
Armijo’s rule. The whole algorithm procedure solving the
optimization problem in Eq. (4) is outlined in Algorithm 1.

Algorithm 1 SimpleMKKM

1: Input: {Kp}mp=1, k, t = 1.
2: Initialize γ(1) = 1/m, flag = 1.
3: while flag do
4: compute H by solving a kernel k-means with

Kγ(t) =
∑m
p=1

(
γ

(t)
p

)2
Kp.

5: compute ∂J (γ)
∂γp

(p = 1, · · · ,m) and the descent di-
rection d(t) in Eq. (9).

6: update γ(t+1) ← γ(t) + αd(t).
7: if max |γ(t) − γ(t−1)| ≤ 1e− 4 then
8: flag=0.
9: end if

10: t← t+ 1.
11: end while

3.4 Computational Complexity and Convergence
We discuss the computational complexity of SimpleMKKM.
From Algorithm 1, at each iteration, SimpleMKKM needs to
solve a kernel k-means problem, calculate the reduced gra-
dient, and search optimal step size. Therefore, its computa-
tional complexity at each iteration isO(n3+m∗n3+m∗n0),
where n0 is the maximal number of operations required to
find the optimal step size. As observed, SimpleMKKM does
not significantly increase the computational complexity of
existing MKKM algorithms, as also validated by the experi-
mental results in Figure 6.

We then briefly discuss the convergence of Sim-
pleMKKM. Note that Eq. (6) is a traditional kernel k-
means which has a global optimum. Under this condition,
the gradient computation in Theorem 1 is exact, and our
algorithm performs reduced gradient descent on a contin-
uously differentiable function J (γ) defined on the simplex
{γ ∈ Rm|

∑m
p=1 γp = 1, γp ≥ 0, ∀p}, which does converge

to the minimum of J (γ) [26]. The quick convergence of
SimpleMKKM is validated by the experimental results in
Figure 5.

We conclude this section by discussing the differences
with MKKM-MM [16]. Though both works share a min-max

(max-min) framework, their differences can be summarized
from the following three aspects: (1) The objectives are
different. SimpleMKKM adopts the unsupervised kernel
alignment criterion while MKKM-MM inherits the objective
of MKKM, which can be clearly seen from Eq. (3) and Eq. (4).
Further, MKKM-MM applies the `2-norm constraints on γ
to avoid sparse solutions. However, although using the `1-
norm constraint, our SimpleMKKM still obtains non-sparse
solution, as shown by the results in Figure 4. (2) More
importantly, the optimization strategies are totally different.
MKKM-MM follows the widely used alternating optimiza-
tion paradigm to solve Eq. (3). In contrast, we, for the first
time, reformulate the MKKM as a minimization problem,
and develop a reduced gradient descent algorithm to effi-
ciently solve it. (3) The clustering performance is different.
We empirically compare their clustering performance, and
observe that SimpleMKKM consistently and significantly
outperforms MKKM-MM on all 11 benchmark datasets, as
shown in Table 1.

4 THE GENERALIZATION ANALYSIS

Generalization error for k-means clustering has been stud-
ied by fixing the centroids obtained in the training process
and computing their generalization to testing data [27], [28].
In this section, we study how the centroids obtained by
the proposed SimpleMKKM generalizes onto test data by
deriving its generalization bound.

We now define the error of SimpleMKKM. Let Ĉ =
[Ĉ1, · · · , Ĉk] be the learned matrix composed of the k
centroids and γ̂ the learned kernel weights by the proposed
SimpleMKKM, where Ĉv = 1

|Ĉv|

∑
j∈Ĉv

φγ̂(xj), 1 ≤ c ≤ k.
By defining Θ = {e1, · · · , ek}, effective SimpleMKKM clus-
tering should make the following error small

1− Ex

[
maxy∈Θ〈φγ̂(x), Ĉy〉Hk

]
, (10)

where φγ̂(x) = [γ̂1φ
>
1 (x), ·, γ̂mφ>1 (x)]> is the learned fea-

ture map associated with the kernel function Kγ̂(·, ·) and
e1, · · · , ek form the orthogonal bases of Rk. Intuitively, it
says the expected alignment between test points and their
closest centroid should be high. We show how the proposed
algorithm achieves this goal.

Let us define a function class first:

F =
{
f : x 7→ 1−maxy∈Θ〈φγ(x),Cy〉Hk

∣∣∣γ>1m = 1,

γp ≥ 0,C ∈ Hk, |Kp(x, x̃)| ≤ b, ∀p,∀x ∈ X
}
,

(11)
where Hk stands for the multiple kernel Hilbert space.

Theorem 2. For any δ > 0, with probability at least 1 − δ, the
following holds for all f ∈ F :

E [f(x)] ≤ 1

n

∑n

i=1
f(xi) +

√
π/2bk√
n

+ (1 + b)

√
log 1/δ

2n
.

(12)

The detailed proof is provided in the appendix due to
conciseness and readability.

According to Theorem 2, for any learned γ̂ and Ĉ, to
achieve a small

Ex[f(x)] = 1− Ex

[
maxy∈Θ

〈
φγ̂(x), Ĉy

〉
Hk

]
, (13)
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the corresponding 1
n

∑n
i=1 f(xi) needs to be as small as

possible. Assume that γ and C are obtained by minimizing
1
n

∑n
i f(xi) and that H is constrained to be orthogonal, we

have
1

n

∑n

i=1
f(xi) ≤ 1− 1

n
Tr(KγHH>) (14)

because the proposed algorithm poses a constraint H>H =
Ik which will make the corresponding centroids non-
optimal for minimizing 1

n

∑n
i=1 f(xi). This means that

1 − 1
nTr(KγHH>) is an upper bound of 1

n

∑n
i=1 f(xi). To

minimize the upper bound, we may have to maximize over
γ and H, leading to maxγ maxH Tr(KγHH>). However, it
is intractable to find a good solution to γ and H under this
criterion, and it is prone to over-fitted solutions [16]. Instead,
we take one of its lower bounds, minγ maxH Tr(KγHH>)
as the the objective of SimpleMKKM in Eq. (4). This analysis
verifies the good generalization ability of the proposed
SimpleMKKM.

5 EXPERIMENTAL RESULTS

In this section, we conduct a comprehensive experimental
study to evaluate the proposed SimpleMKKM in terms
of clustering performance, the learned kernel weights, the
running time, and convergence.

5.1 Experimental Settings

A number of standard MKKM benchmark datasets are
adopted to evaluate SimpleMKKM, including Flo171,
Flo1022, PFold3, CCV4, Digit5, Cal6. Meanwhile, six sub-
datasets, i.e. Cal-5, Cal-10, Cal-15, Cal-20, Cal-25 and Cal-30,
are constructed via selecting the first 5, 10, 15, 20, 25 and
30 samples from each class respectively from the Caltech102
data. Their details are shown in Table 2. It can be observed
that the number of samples, kernels and categories of these
datasets shows considerable variation, providing a good
platform to compare the performance of different clustering
algorithms.

TABLE 2: Specification of our 11 benchmark datasets.

Dataset Number of
Samples Kernels Clusters

Flo17 1360 7 17
Flo102 8189 4 102
PFold 694 12 27
CCV 6773 3 20
Digit 2000 3 10
Cal-5 510 48 102
Cal-10 1020 48 102
Cal-15 1530 48 102
Cal-20 2040 48 102
Cal-25 2550 48 102
Cal-30 3060 48 102

For all data sets, the number of clusters k is assumed
known and is set as the true number of classes. The widely

1. www.robots.ox.ac.uk/∼vgg/data/flowers/17/
2. www.robots.ox.ac.uk/∼vgg/data/flowers/102/
3. mkl.ucsd.edu/dataset/protein-fold-prediction
4. www.ee.columbia.edu/ln/dvmm/CCV/
5. http://ss.sysu.edu.cn/py/
6. www.vision.caltech.edu/Image Datasets/Caltech101/

used clustering accuracy (ACC), normalized mutual infor-
mation (NMI), purity and rand index are applied to evaluate
the clustering performance.

For all algorithms, we repeat each experiment 50 times
with random initialization to reduce the effect of random-
ness caused by k-means, and report the means and varia-
tion. We next thoroughly study SimpleMKKM in terms of:
clustering performance, ablation study on the formulation
and optimization, evolution of the learned H, clustering
with number of samples, clustering with number of base
kernels, the learned kernel weights, running time and al-
gorithm convergence. Along with SimpleMKKM, we ran
another eight comparative algorithms in recent MKC litera-
ture, including

• Average kernel k-means (Avg-KKM). The consen-
sus kernel is the uniformly combined base kernels,
which is taken as the input of kernel k-means.

• Multiple kernel k-means (MKKM) [5]. The base ker-
nels are linearly combined into the consensus kernel.
In addition, the combination weights are optimized
along with clustering.

• Localized multiple kernel k-means (LMKKM) [6].
The base kernels are combined with sample-adaptive
weights.

• Optimal neighborhood kernel clustering (ONKC)
[29]. The consensus kernel is chosen from the neigh-
bor of linearly combined base kernels.

• Multiple kernel k-means with matrix-induced reg-
ularization (MKKM-MiR) [13]. The optimal combi-
nation weights are learned by introducing a matrix-
induced regularization term to reduce the redundan-
cy among the base kernels.

• Mulitple kernel clustering with local alignment
maximization (LKAM) [12]. The similarity of a sam-
ple to its k-nearest neighbors, instead of all samples,
is aligned with the ideal similarity matrix.

• Multi-view clustering via late fusion alignment
maximization (LF-MVC) [30]. Base partitions are
firstly calculated using each single view and then
optimally integrated into a consensus partition.

• MKKM-MM [16]. It proposes a minH-maxγ for-
mulation that combines views in a way to reveal
high within-cluster variance in the combined kernel
space and then updates clusters by minimizing such
variance.

The implementations of the above algorithms are publicly
available in corresponding papers, and we directly adopt
them without revision in our experiments. Among all the
compared algorithms, ONKC [29], MKKM-MiR [13], LKAM
[12] and LF-MVC [30] have hyper-parameters to be tuned.
Note that the issue of hyper-parameter tuning in clustering
tasks is still an open problem. By following the same way in
literate, we reuse their released codes and tune the hyper-
parameters by grid search to produce the best possible
results on each dataset. By this way, the reported results
of these algorithms with hyper-parameters would be over-
estimated. As a result, the hyper-parameter tuning would
prohibit these multiple kernel (view) clustering algorithm
from practical applications. It is therefore desired that a

www.robots.ox.ac.uk/~vgg/data/flowers/17/
www.robots.ox.ac.uk/~vgg/data/flowers/102/
mkl.ucsd.edu/dataset/protein-fold-prediction
www.ee.columbia.edu/ln/dvmm/CCV/
http://ss.sysu.edu.cn/py/
www.vision.caltech.edu/Image_Datasets/Caltech101/
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TABLE 1: Empirical evaluation and comparison of SimpleMKKM with eight baseline methods on five benchmark datasets
in terms of clustering accuracy (ACC), normulaized mutual information (NMI), Purity and Rand Index. Boldface means
no statistical difference from the best one.

DATASETS AVG-KKM MKKM LMKKM ONKC MKKM-MIR LKAM LF-MVC MKKM-MM SIMPLEMKKM
[5] [6] [29] [13] [12] [30] [16] PROPOSED

ACC

FLO17 51.0± 1.3 43.6± 1.7 42.7± 1.5 43.4± 2.1 58.0± 1.2 48.9± 0.9 57.2± 1.3 51.0±1.3 59.1± 1.2
FLO102 27.1± 0.8 22.4± 0.5 - 39.2± 0.9 39.1± 1.3 40.4± 1.0 29.0± 1.0 27.1±0.8 42.5± 0.8
PFOLD 29.0± 1.6 27.0± 1.1 22.4± 0.7 35.3± 1.3 34.3± 1.7 33.8± 1.7 31.6± 1.7 29.0±1.6 34.7± 1.9
CCV 19.6± 0.6 18.0± 0.5 18.6± 0.1 22.1± 0.6 20.9± 0.9 18.9± 0.3 23.1± 0.9 19.6±0.6 22.2± 0.7
DIGIT 88.8± 0.1 47.3± 0.7 47.3± 0.7 89.5± 0.1 87.4± 0.1 95.0± 0.1 89.1± 0.1 88.8±0.7 90.3± 0.1
AVG. 43.1 31.7 - 45.9 47.9 47.4 46.0 43.1 49.8

NMI

FLO17 49.6± 0.8 44.3± 1.3 43.8± 1.0 43.1± 1.3 56.2± 0.6 48.2± 0.6 54.6± 0.9 49.7±0.8 57.5± 0.8
FLO102 46.0± 0.5 42.7± 0.2 - 55.7± 0.4 55.9± 0.6 55.8± 0.3 47.5± 0.3 46.0±0.5 58.6± 0.5
PFOLD 40.3± 1.2 38.0± 0.6 34.7± 0.6 44.0± 0.8 43.1± 1.0 43.6± 1.0 41.8± 0.9 40.3±1.3 44.4± 1.1
CCV 16.8± 0.4 15.1± 0.5 14.4± 0.1 18.4± 0.3 17.9± 0.4 16.8± 0.2 19.3± 0.3 16.8±0.4 18.2± 0.3
DIGIT 80.8± 0.2 48.8± 0.7 48.7± 0.7 81.7± 0.1 79.6± 0.1 89.4± 0.1 81.1± 0.2 80.8±0.2 83.3± 0.1
AVG. 46.7 37.8 - 48.6 50.5 50.8 48.9 46.7 52.4

PURITY

FLO17 52.0± 1.0 45.1± 1.4 44.5± 1.4 45.2± 1.9 59.4± 0.9 50.1± 0.6 58.1± 1.4 52.0±1.0 60.5± 1.4
FLO102 32.3± 0.6 27.8± 0.4 - 45.1± 0.9 45.2± 1.0 46.7± 0.6 34.5± 0.5 32.3±0.6 48.6± 0.7
PFOLD 37.4± 1.7 33.7± 1.1 31.2± 1.0 41.9± 1.0 41.2± 1.4 41.6± 1.3 38.9± 1.5 37.4±1.7 41.8± 1.5
CCV 23.8± 0.5 22.2± 0.5 22.0± 0.1 24.3± 0.5 23.4± 0.7 22.2± 0.3 26.1± 0.5 23.8±0.5 25.3± 0.5
DIGIT 88.8± 0.1 50.1± 0.7 50.1± 0.7 89.5± 0.1 87.4± 0.1 95.0± 0.1 89.1± 0.1 88.8± 0.1 90.3± 0.1
AVG. 46.9 35.8 - 49.2 51.3 51.1 49.3 46.9 53.3

RAND INDEX

FLO17 32.3± 1.0 26.4± 1.3 26.0± 1.1 24.3± 1.6 39.6± 0.8 30.2± 0.8 38.6± 1.0 32.3±1.3 41.3± 1.1
FLO102 15.5± 0.5 12.1± 0.4 - 24.5± 0.6 24.9± 1.0 26.3± 0.6 17.2± 0.8 15.5±0.5 28.5± 0.8
PFOLD 14.4± 1.8 12.1± 0.7 7.8± 0.4 17.6± 1.3 17.4± 1.6 17.3± 1.7 16.2± 1.7 14.4±1.8 17.6± 1.9
CCV 6.6± 0.2 5.8± 0.2 5.6± 0.1 7.5 ± 0.3 7.0± 0.4 6.2± 0.1 8.4± 0.5 6.6 ±0.2 7.5± 0.2
DIGIT 77.5± 0.2 31.4± 0.6 31.3± 0.6 78.7± 0.1 75.4± 0.1 89.2± 0.1 78.2± 0.2 77.5±0.2 80.3± 0.1
AVG. 29.3 17.6 - 30.5 32.9 33.8 31.7 29.3 35.0

clustering algorithm is parameter-free, as the proposed Sim-
pleMKKM does.

5.2 Experimental Results
5.2.1 Clustering Performance
Table 1 presents the ACC, NMI and purity comparison of
the above algorithms. From this table, we have the following
observations:

• The proposed SimpleMKKM consistently
and significantly outperforms MKKM.
For example, it exceeds MKKM by
12.7%, 16%, 6.1%, 3.1%, 34.6%, 4.4%, 7.2%, 8.9%,
10.1%, 10.6% and 11.7% in terms of ACC on all
benchmark datasets. These results demonstrate the
efficacy of its min-max formulation and associated
optimization algorithm.

• MKKM-MM [16] is the first try in literature to im-
prove MKKM via minimization-maximization. As
observed, it does improve the MKKM. However the
improvement over MKKM is marginal on all dataset-
s. Meanwhile, the proposed SimpleMKKM signif-
icantly outperforms MKKM-MM. This once again
demonstrates the advantage of our formulation and
the associated optimization strategy.

• Our SimpleMKKM achieves comparable or slightly
better performance than MKKM-MiR [13], ONKC

[29], and LF-MVC [30], all of which are considered
the state of the art in multi-kernel clustering. Note
that all of these algorithms have several hyper-
parameters to tune due to the incorporation of reg-
ularization on the kernel weight γ. Though demon-
strating promising clustering performance, these al-
gorithms need to take a lot of effort to determine
the best hyper-parameters in practical applications.
And parameter tuning may be impossible in real
applications where there is no ground truth clus-
tering to optimize. In contrast, our SimpleMKKM is
parameter-free.

In summary, SimpleMKKM demonstrates superior clus-
tering performance over the alternatives on all datasets and
has no hyper-parameter to be tuned. We expect that the
simplicity and efficacy of SimpleMKKM will make it a good
option to be considered for practical clustering applications.
Note that some results of LMKKM [6] are not reported
due to out-of-memory errors, which are caused by its cubic
computational and memory complexity.

5.2.2 Ablation Study on the Formulation and Optimization
In order to show the advantage of the proposed formula-
tion and optimization algorithm, we conduct an ablation
study on all benchmark datasets to compare the alterna-
tives MKKM-R and SimpleMKKM-C. MKKM-R denotes
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Fig. 1: The clustering comparison of the learned H by MKKM and the proposed SimpleMKKM with iterations.
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Fig. 2: The clustering performance of the aforementioned algorithms with the variation of number of samples on Caltech102.

optimizing the objective of existing MKKM in Eq. (1) with
reduced gradient descent, while SimpleMKKM-C denotes
optimizing the criterion in Eq. (4) with coordinate descen-
t optimization (see Section 3.1 for discussion). Note that
SimpleMKKM-C has the same objective as SimpleMKKM,
but it uses the widely adopted alternate optimization to
solve it in place of our newly derived reduced gradient
algorithm.

From the results reported in Table 3, we clearly observe
that: (1) Our SimpleMKKM and SimpleMKKM-C formula-
tions have significant advantages over MKKM and MKKM-
R, demonstrating the value of our novel min-max objective;
(2) It is also observed that our SimpleMKKM outperforms
SimpleMKKM-C, which confirms that our new gradient-
based optimization algorithm is also much better than the
widely used alternate optimization. This ablation study well
demonstrates that both our novel formulation and new
optimization attribute to the improvement of clustering
performance.

5.2.3 Evolution of the Learned H

To compare the clustering performance of the proposed
SimpleMKKM and existing MKKM with iterations, we take
H at each iteration to calculate ACC, NMI, purity and
rand index, and report them in Figure 1. As observed,
the start points of both SimpleMKKM and MKKM on all

sub-figures are the same. This is because both algorithms
are initialized with the unified weights, which generates
the same H, learning to the same clustering performance.
The clustering performance of the proposed SimpleMKKM
firstly is increased with iterations, and then kept stable,
which sufficiently demonstrates the effectiveness of our
algorithm. In contrast, the clustering performance of MKKM
is decreased with iterations on all sub-figures, implying
that existing MKKM is inferior to average kernel k-means.
This states that the widely used MKKM may not be a
good choice to fuse multiple base kernels. Comparable, our
proposed SimpleMKKM significantly outperforms average
kernel k-means on all sub-figures, considerably showing the
effectiveness and necessity of the learning procedure.

5.2.4 Clustering Performance with Number of Samples
In this subsection, we conduct an experiment to compare
the clustering performance of the proposed SimpleMKKM
with the variation of number of samples on Caltech102.
In specific, we evaluate their clustering performance on
Cal-5, Cal-10, Cal-15, Cal-20, Cal-25 and Cal-30, which are
constructed by selecting the first 5, 10, 15, 20, 25 and 30
samples from each class respectively from the Caltech102
data.

The ACC, NMI, purity and rand index of these algo-
rithms with the variation of number of samples are plotted
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Fig. 3: The clustering performance of the aforementioned algorithms with the variation of number of base kernels on
Caltech102.
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Fig. 4: The kernel weights learned by different algorithms. SimpleMKKM maintains reduced sparsity compared to several
competitors. Other datasets omitted due to space limit.
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Fig. 5: The objective of SimpleMKKM decreases with iterations. The curves for other datasets are omitted due to space
limit.

in Figure 2. As observed, the proposed SimpleMKKM con-
siderably improves the clustering performance of existing
MKKM and its variants. Taking the results in sub-figure
2a for example, SimpleMKKM outperforms MKKM by
8.3%, 11.3%, 12.1%, 13.2%, 12.9% and 14% with different
number of samples for each cluster, respectively. It exceeds
the newly developed MKKM variant, i.e., MKKM-MM [16],
by 0.1%, 1.5%, 1.3%, 2.1%, 0.5% and 2%, respectively. We
also observe that SimpleMKKM achieves comparable clus-
tering performance with LF-MVC, which is considered as
the state-of-the-art in existing multi-view clustering [30]. In
sum, the proposed SimpleMKKM achieves the best cluster-
ing performance among MKKM based clustering algorithm-
s, and is comparable with the strongest baseline among
multi-view clustering in terms of ACC, NMI, purity and
rand index.

5.2.5 Clustering with Variation of Base Kernels
To explore the ability of the proposed SimpleMKKM in
dealing with different number of base kernels, we de-
sign an experiment on Caltech102 by selecting the first

TABLE 3: Empirical comparison of SimpleMKKM with
MKKM, MKKM-R and SimpleMKKM-C on all benchmark
datasets.

Dataset MKKM [5] MKKM-R SimpleMKKM-C SimpleMKKM

ACC

Flo17 43.6± 1.2 43.7± 1.4 54.2± 1.8 59.1± 1.2
Flo102 22.4± 0.5 22.4± 0.5 41.8± 1.2 42.5± 0.8
PFold 27.0± 1.1 26.6± 1.1 29.0± 1.4 34.7± 1.9
CCV 18.0± 0.5 17.9± 0.6 22.1± 0.7 22.2± 0.7
Digit 47.3± 0.7 47.3± 0.7 90.4± 0.9 90.3± 0.6
Cal-30 16.6± 0.4 16.7± 0.4 30.4± 1.1 30.6± 0.9

NMI

Flo17 44.3± 1.3 44.3± 1.1 54.3± 1.4 57.5± 0.8
Flo102 42.7± 0.2 42.6± 0.2 58.0± 0.5 58.6± 0.5
PFold 38.0± 0.6 37.5± 0.8 38.4± 0.8 44.4± 1.1
CCV 15.1± 0.5 14.8± 0.4 18.2± 0.3 18.2± 0.3
Digit 48.8± 0.7 48.7± 0.7 83.5± 0.2 83.3± 0.1
Cal-30 40.1± 0.3 40.2± 0.3 51.8± 0.6 51.8± 0.5

Purity

Flo17 45.1± 1.4 44.9± 1.4 55.1± 1.8 60.5± 1.4
Flo102 27.8± 0.4 27.8± 0.4 47.9± 0.8 48.6± 0.7
PFold 33.7± 1.1 33.1± 0.9 35.7± 1.0 41.8± 1.4
CCV 22.2± 0.5 22.3± 0.4 25.2± 0.5 25.3± 0.5
Digit 50.1± 0.7 50.1± 0.7 90.4± 0.9 90.3± 0.6
Cal-30 18.0± 0.5 18.1± 0.4 32.5± 1.0 32.7± 0.8

Rand Index

Flo17 45.1± 1.4 44.9± 1.4 55.1± 1.8 60.5± 1.4
Flo102 27.8± 0.4 27.8± 0.4 47.9± 0.8 48.6± 0.7
PFold 33.7± 1.1 33.1± 0.9 35.7± 1.0 41.8± 1.4
CCV 22.2± 0.5 22.3± 0.4 25.2± 0.5 25.3± 0.5
Digit 50.1± 0.7 50.1± 0.7 90.4± 0.9 90.3± 0.6
Cal-30 18.0± 0.5 18.1± 0.4 32.5± 1.0 32.7± 0.8

8, 16, 24, 32, 40 and 48 base kernels. The clustering per-
formance in terms of ACC, NMI, purity and rand index
of the aforementioned algorithms with different number
of base kernels are shown in Figure 3. As observed, we
conclude that: i) The proposed SimpleMKKM demonstrates
the overall best clustering performance among all compared
ones in terms of ACC, NMI, purity and rand index. ii) With
the increase of number of base kernels, the clustering perfor-
mance of MKKM is dramatically decreased. In contrast, the
clustering performance of SimpleMKKM is relatively stable
with different number of base kernels, demonstrating its
advantages in handling large number of base kernels. iii)
The results in Figure 3 show that more base kernels is not
necessarily helpful for improving clustering performance.
In some applications, larger number of base kernels may
result in worse clustering performance. This motivates us to
automatically select a subset from a group of pre-specified
base kernels and optimally combined the selected subset
for multiple kernel clustering. This strategy could further
significantly improve the clustering performance, which
will be explored in our future work.

5.2.6 Kernel Weight Analysis
We next investigate the kernel weights learned by the
compared algorithms. The results are plotted in Figure 4.
We can see that the kernel weights learned by MKKM are
extremely sparse on some datasets such as UCI-Digital,
which is caused by the alternate optimization. This sparsi-
ty insufficiently exploits the multiple kernel matrices and
explains the weak performance of MKKM. For example,
the clustering accuracy of MKKM on UCI-Digital is only
47.2%. However, despite the `1-norm constraint on γ, the
kernel weights learned by our SimpleMKKM are all non-
sparse on all datasets, which contributes to its superior
clustering performance. This non-sparsity of the learned
kernel weights is attributed to our new reduced gradient
descent algorithm, which in turn is derived based on our
new min-max kernel alignment objective.

5.2.7 Runtime and Convergence
We also report the running time of the compared algorithms
in Figure 6. As observed, in addition to significantly im-
proving performance, SimpleMKKM does not considerably
increase the running time compared with MKKM and its
variants. The objective of SimpleMKKM with iterations is
reported in Figure 5. From these figures, we observe that
the objective is monotonically decreased and the algorithm
usually converges in less than ten iterations on all dataset-
s. This corroborates our earlier theoretical analysis of the
nature of our proposed objective and efficient optimisation
algorithm.
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Fig. 6: Running time of different algorithms on 11 bench-
mark datasets (in second). The experiments are conduct-
ed on a PC with Intel(R) Core(TM)-i7-5820 3.3 GHz CPU
and 32G RAM in MATLAB environment. SimpleMKKM is
comparably fast to alternatives while providing superior
performance and requiring no hyper-parameter tuning.

6 CONCLUSION

In this paper, we have extended the widely used supervised
kernel alignment criterion to clustering, and introduce a
novel clustering objective of by minimizing alignment for γ
and maximizing it for H. We show that this novel objective
can be transformed into a minimization problem which
is differentiable and amenable to a solution by reduced
gradient descent. This makes SimpleMKKM unique among
MKC alternatives, in not requiring a local-minimum prone
alternating coordinate descent strategy.

We derive a generalization bound for our approach using
global Rademacher complexity analysis. Comprehensive ex-
periments demonstrate the effectiveness of SimpleMKKM.
We expect that the simplicity, lack of hyper-parameters,
and efficacy of SimpleMKKM will make it a go-to solution
for practical multi-kernel clustering applications in future.
Future work may aim to extend SimpleMKKM to handle
incomplete kernels, study further applications, and derive
convergence rates using local Rademacher complexity anal-
ysis [31], [32]. In addition, we plan to automatically select a
subset from a large number of base kernels, and optimally
combined them for multiple kernel clustering.
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