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Abstract—Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g.,
interference of background clutter, scale sensitivity and missing boundary details of blur regions. To deal with these issues, we propose
a deep neural network which recurrently fuses and refines multi-scale deep features (DeFusionNet) for defocus blur detection. We first
fuse the features from different layers of FCN as shallow features and semantic features, respectively. Then, the fused shallow features
are propagated to deep layers for refining the details of detected defocus blur regions, and the fused semantic features are propagated
to shallow layers to assist in better locating blur regions. The fusion and refinement are carried out recurrently. In order to narrow the
gap between low-level and high-level features, we embed a feature adaptation module before feature propagating to exploit the
complementary information as well as reduce the contradictory response of different feature layers. Since different feature channels are
with different extents of discrimination for detecting blur regions, we design a channel attention module to select discriminative features
for feature refinement. Finally, the output of each layer at last recurrent step are fused to obtain the final result. We collect a new dataset

consists of various challenging images and their pixel-wise annotations for promoting further study. Extensive experiments on two
commonly used datasets and our newly collected one are conducted to demonstrate both the efficacy and efficiency of DeFusionNet.

Index Terms—Defocus Blur Detection, Multi-scale Features, Feature Fusing, Channel Attention.

1 INTRODUCTION

A S a common phenomenon, defocus blur occurs when
objects in a scene are not within the camera’s depth of
focus. Defocus blur detection, which aims to detect the out-
of-focus regions from an image, has gained much attention
due to its wide range of potential applications such as image
quality assessment [36], [42], salient object detection [10],
[38], image deblurring [21], [29], defocus magnification [2],
[37] and image refocusing [50], [51], just list a few.

In the past decades, a variety of defocus blur detection
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Fig. 1. Some challenging cases for defocus blur detection. (a) Input
image, defocus blur detection map obtained by (b) LBP [46], (c) HIFST
[1], (d) BTBNet [56], (e) our DeFusionNet, and (f) ground truth (GT).

methods have been proposed. Based on the used image
features, these methods can be generally classified into
two categories, i.e., traditional hand-crafted features based
methods and deep learning based methods. As to the former
kind of methods, they often extract features such as gradient
and frequency to model the edge changes since defocus blur
usually blunts object edges in an image [18], [23], [25], [28],
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[29], [33], [39], [41], [52], [59], [60]. Although great advances
have been made by using traditional hand-craft features,
these methods are affected by a number of challenges.
First, traditional low-level features cannot distinguish well
blurred regions which do not contain structural information
from in-focus smooth regions. Second, these methods do
not utilize global semantic information which is critical for
detecting low-contrast focal regions (as shown in the red
rectangular region of Figure 1a) and dealing with cluttered
background (as shown in the yellow rectangular region of
Figure 1a). In addition, the edge information between in-
focus regions and blurry regions has not been well pre-
served (as shown in the green rectangular region of Figure
1a).

Recently, due to their strong feature extraction and learn-
ing capability, deep convolutional neural networks (CNNs)
have made remarkable advances in various computer vi-
sion tasks, such as image classification [14], [32], object
detection [12], [17], object tracking [16], [27], [34], scene
semantic segmentation [19], [22], [54], image de-noising
[11], [48] and super-resolution [4], [31]. As a result, CNNs
have been used for the detection of image defocus blur
regions. In [45], a pre-trained deep neural network and a
general regression neural network are proposed to classify
the types of blurring and then estimate their parameters.
By systematically analyzing the effectiveness of different
defocus detection features, Park et al. [25] extracted deep
and hand-crafted features in image patches which contain
sparse strong edges. However, low-contrast focal regions
are still not well distinguished. In addition, a series of
spatial pooling and convolution operations result in los-
ing much of the fine details of image content. In [56],
Zhao et al. proposed a multi-stream bottom-top-bottom
fully convolutional network (BTBNet), which is the first
attempt to develop an end-to-end deep network for defocus
blur detection. In BTBNet, low-level cues and high-level
semantic information are integrated to promote the final
results and a multi-stream strategy is leveraged to handle
the sensitivity of defocus degree to image scales. Although
significant improvement has been attained by BTBNet, it
uses a forward stream and a backward stream to integrate
features from different levels at each image scale, this leads
to high computational complexity for both network training
and testing, and the complementary information of different
layers cannot been fully exploited. Consequently, cluttered
background cannot be dealt with properly. In addition,
some low-contrast focal areas are still mistakenly detected
as defocus blur regions. In this work, we propose a novel
efficient pixel-wise fully convolutional network for defocus
blur detection via recurrently fusing and refining multi-scale
deep features (DeFusionNET). Particularly, we recurrently
fuse and refine the discriminative deep features across deep
and shallow layers in an alternate and cross-layer manner,
then the complementary information of features from differ-
ent layers can be fully exploited for boosting defocus blur
detection performance.

This manuscript is a significant extension of the confer-
ence version [40], and it differs [40] with following addition-
al contributions:

o Compared with the conference version, we newly

designed a channel attention module and integrated
it into the DeFusionNET for selecting discriminative
features to further boost the feature refining process.

o Considering that most of previous deep neural net-
works mainly integrate multiple level deep features
indiscriminately by commonly used operations such
as addition, concatenation and multiplication while
ignore the gap between different feature layers, we
introduce a feature adaptation module and embed it
into our network before feature propagating, which
is designed to exploit the complementary informa-
tion as well as reduce the contradictory response of
different layers.

e More experiments were conducted with new evalu-
ation criteria to evaluate and analyze the proposed
network. Results of the benchmarking methods on
different datasets will be publicly released for aca-
demic usage.

e A new dataset which consists of 150 challenging
images and their corresponding pixel-level annota-
tions was collected. The proposed network has been
successfully validated using both previous datasets
and our newly collected one. The newly collected
dataset will be made publicly available for further
academic research and evaluation.

2 RELATED WORK

As a sub-field of computer vision, defocus blur detection
has been widely investigated due to its important role in
many practical applications. Therefore, a variety of defocus
blur detection methods have been put forward, which can
be roughly categorized into two classes, i.e., hand-crafted
features based methods and deep learning based methods.
Following we give a brief review about these methods.

2.1 Hand-crafted Features based Methods

Since defocus blur usually degenerates object edges in an
image, traditional methods often extract features such as
gradient and frequency which can describe the change of
edges [3], [5], [35], [36], [37], [60]. Based on the observation
that the first few most significant eigen-images of a blurred
image patch usually have higher weights (i.e. singular val-
ues) than an image patch with no blur, Su et al. [33] detected
blur regions by examining the singular values for each
image pixel. Shi et al. [29] studied a series of blur feature
representations such as gradient and data-driven local filters
features to enhance discriminative power for differentiating
blurred and unblurred image regions. In [23], Pang et al.
developed a kernel-specific feature to detect blur regions of
an image, the blur regions and in-focus regions are classified
using SVM. Considering that feature descriptors based on
local information cannot distinguish the just noticeable blur
reliably from unblurred structures, Shi et al. [30] proposed
a simple yet effective blur feature via sparse representation
and image decomposition. Yi and Eramian [46] designed a
sharpness metric based on local binary patterns and the in-
and out-of-focus image regions are separated by using the
metric. Since the blur can affect the spectrum of an image,
Tang et al. [39] designed a log averaged spectrum residual
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metric to estimate the blur amount of edge pixels, then an
iterative updating mechanism is proposed to refine the blur
map from coarse to fine based on the intrinsic relevance of
similar neighbor image regions. Golestaneh and Karam [1]
proposed to detect defocus blur maps based on a novel high-
frequency multiscale fusion and sort transform of gradient
magnitudes. Xu et al. [44] presented a fast yet effective ap-
proach to estimate the spatially varying amounts of defocus
blur at edge locations based on maximizing the ranks of the
corresponding local patches, then the complete defocus map
is generated by a standard propagation procedure.

Hand-crafted feature based methods work well for im-
ages with simple structures but are not effective enough
for scenes with complex contents. Therefore, extracting high
level and more discriminative features are necessary.

2.2 Deep Learning based Methods

Due to their ability in learning to extract hierarchical fea-
tures, deep CNNs based methods have refreshed the records
of many computer vision tasks [12], [16], [31], [32], [54],
including defocus blur detection [8], [13], [15], [20], [25],
[55], [56], [58]. In [25], high-dimensional deep features are
first extracted by using a CNN, then these features and tra-
ditional hand-crafted features are concatenated together and
fed into a fully connected neural network for determining
the degree of defocus. Purohit et al. [26] proposed to train
two sub-networks to learn global context and local features
respectively, then the pixel-level probabilities estimated by
the two networks are aggregated and feed into a MRF
based framework for blur region segmentation. Zhang et al.
[49] proposed a dilated fully convolutional neural network
with pyramid pooling and boundary refinement layers to
generate blur response maps. In [20], Ma et al. demon-
strated that the high-level semantic information is critical
for defocus identification. Considering that the degree of
defocus blur is sensitive to scales, Zhao et al. [56] proposed
a multi-stream bottom-top-bottom fully convolutional net-
work (BTBNet) to integrate low-level cues with high-level
semantic information for defocus blur detection. Feature
aggregation [40] and ensemble networks [58] are also pro-
posed for this task. Lee et al. [15] produced a novel depth-
of-field dataset with synthetically blur for network training.
Although significant improvement has been obtained by
existing deep neural networks, there are still several issues
which make the detected results not satisfactory enough for
some subsequent tasks. First, most of previous deep neural
networks directly integrate multiple level deep features by
commonly used operations such as addition, concatenation
and multiplication, but ignore the gap between different
levels of features. Second, the high-level context features
which are critical for discriminating in-focus smooth regions
may be diluted as they pass on the top-down flow stream.
Third but not last, the redundancy existed in the high-level
features is not sufficiently suppressed while the channel-
wise attention is not well exploited.

In this work, we propose an effective and efficient de-
focus blur detection deep neural network via recurrently
fusing and refining multi-scale discriminative deep features
(DeFusionNET). Instead of directly refining the detection
score map as many previous deep CNNs based detection

methods do, we recurrently fuse and refine the features
of different layers in DeFusionNET. Particularly, a feature
fusing and refining module (FFRM) is designed to exploit
the complementary information of low-level cues and high-
level semantic features in a cross-level manner, i.e., features
from low-level layers are fused and used to refine features
extracted from high-level layers, and vice versa. Consider-
ing that directly integrating features from multiple layers
could ignore the gap between different feature layers, we
introduce a feature adaptation module and embed it into
our network to avoid the contradictory response of different
layers. Since different scales of receptive views produce the
features with different extents of discrimination, we design
and integrate a channel attention module after the feature
fusing at each step to select more discriminative features to
refine the layer-wise features. Note that different layers of a
CNN extract features at different scales of an image and the
degree of defocus blur is sensitive to image scales, we fuse
the detection score maps estimated from different network
layers at the last recurrent step to generate the final defo-
cus blur map. Experimental results demonstrate that the
proposed DeFusionNET performs better than other state-
of-the-art methods in terms of both accuracy and efficiency.

3 PROPOSED DEFUSIONNET

The proposed DeFusionNet takes an image as input and
output a defocus blur detection map with the same resolu-
tion as the input image. Figure 2 shows the entire architec-
ture of DeFusionNET.

For an effective defocus blur detection network, it should
require both low-level cues and high-level semantic infor-
mation for generating the final accurate detected defocus
blur map. The low-level features can help refine the sparse
and irregular detection regions, while the high-level seman-
tic features can serve to locate the blurry regions as well
as suppress the impact of background clutters. In addition,
there are often some smooth in-focus regions within an
object, the high-level semantic information produced by
the deep layers can avoid these regions being detected as
blurry regions. Furthermore, since the degree of defocus is
sensitive to image scales, the network should be capable
of making use of multi-scale features to improve the final
results. Finally, the network should be easily fine-tuned
because there are often no sufficient labeled defocus blur
images for training such a deep network.

Specifically, we choose the VGG network [32] as the
backbone feature extraction network and use the pre-trained
VGG16 model to initialize the network. Firstly, we use
our network to extract a set of hierarchical features which
encode the low-level details and high-level semantic infor-
mation at different scales of an image. On the one hand,
since a series of spatial pooling and convolution operations
progressively reduce the spatial resolution of the initial
image, the fine details of image structure are inevitably
gradually lost, which is harmful for densely distinguishing
in-focus and out-of-focus image regions. On the other hand,
the high-level semantic features extracted by deep layers
can help to locate defocus blur regions. Therefore, how
to exploit the complementary information extracted from
shallow layers and deep layers is critical for the detection of
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Fig. 2. The pipeline of our DeFusionNET. The dark gray block represents the proposed FFRM module. For a given image, we first extract its multi-
scale features by using the basic VGG network. Then the features from shallow layers and deep layers are fused as FSHF and FSEF, respectively.
Considering the complementary information between FSHF and FSEF, we use them to refine the features of deep and shallow layers in a cross-layer
manner. The feature fusion and refinement are performed step by step in a recurrent manner to alternatively refine FSHF, FSEF and the features at
each layer (the times of recurrent step is empirically set to 3 in our experiments). In addition, the deep supervision mechanism is imposed at each
step and the prediction result of each layer are fused to obtain the final defocus blur map.

defocus regions. As to the low-level and high-level feature
maps, they are both upsampled to the same size of the
input image by using the deconvolution operation and
concatenate them together to form fused shallow features
(FSHF) and fused semantic features (FSEF), respectively. In
order to refine the detailed information of features at deep
layers, we aggregate the FSHF with each deep layer as
FSHF encompasses more details of image contents. In order
to facilitate the defocus blur region location information
of features at shallow layers, we also aggregate the FSEF
with each shallow layer as FSEF captures more semantic
information of image contents. The feature fusing and ag-
gregating are recurrently carried out in a cross-layer manner.
Since features extracted from different layers are of different
spatial scales and the degree of defocus blur is sensitive to
image spatial scales, the detection score maps from different
layers are fused at the last recurrent step to generate the
final defocus blur detection map.

3.1 Feature Fusing and Refining Module (FFRM)

The success of deep CNNs owes to its strong capacity
of hierarchically extracting abundant semantic as well as
fine details information from different layers. As discussed
aforementioned, features from both shallow and deep layers
are important for defocus blur region detection. Therefore,
we need to integrate multi-level features to enhance the
discrimination ability for defocus blur detection. In deep
CNN:s, deep layers can capture highly semantic information
which describe the attributes of image contents as a whole,
while shallow layers focus more on subtly fine details which
represent delicate structures of objects, directly fusing the
features from different layers for generating final detection
results may not be appropriate due to the noisy and redun-
dant information. In this work, we propose a feature fusing
and refining module (FFRM) which integrates high-level
semantic features and low-level shallow features separately
and refines them in a cross-layer manner. Figure 3 shows
the architecture of the proposed FFRM model. In addition,
there exist redundancy, complement as well as contradictory
response from the features extracted from different layers,
refining deep features by using commonly used operations
such as addition, concatenation and multiplication could
ignore these information between different layers. There-
fore, we introduce and embed a feature adaptation module

(FAM) before feature propagating to exploit the comple-
mentary information as well as reduce the contradictory
response of different feature layers.

CAM —p Conv —p FSEF

. a—

'Concat

CAM = Conv = FSHF

Fig. 3. The architecture of the proposed feature fusing and refining
module (FFRM).

Supposing there are n total layers in the network, the
first m layers are regarded as shallow layers and the rest
ones as deep layers. For the feature maps generated from
each shallow layer, we upsample them to the size of the
input image by using the deconvolution operation and
concatenate them together. Since different scales of receptive
views produce the features with different extents of discrim-
ination, a channel attention module (CAM) which will be
introduced in the next subsection is added after the concate-
nated feature maps to select more discriminative features.
Then a convolution layer with 1 x 1 kernel is employed to
to the discriminative concatenated feature maps is used to
generate FSHF. The FSHF can be mathematically defined as
follows:

FSHF = ReLU(W; * Cat(Fy,Fy,--- JE2))+by), (1)

where F’ € W x H x C denotes the weighted upsam-
pled feature maps from the i-th layer with C' channels;
W x H is the resolution of input image; Cat represents
the concatenation operation across channels; * represents
convolution operation; W; and b, are the weights and bias
of the convolution that need to be learned during training
and ReLU is the ReLU activation function [14].
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Similarly, the high-level semantic features are fused to
form FSEF as follows:

FSEF = ReLU(Wy, * Cat(F)), 1, F; o, -+ ,F.)) 4+ bp).
@

Since FSHF encodes the fine details while FSEF captures
more semantic information of image contents, one can di-
rectly fuse them to generate defocus blur maps. Howev-
er, this strategy would lead many in-focus regions being
wrongly detected as defocus regions. This is because the
fused FSHF still contains some in-focus details and FSEF
also contains some noisy semantic information. Directly
using FSHF and FSEF not only provides wrong guidance
for defocus blur region detection, but also harms the useful
information originally contained in individual layers. To this
end, we propose to recurrently fuse and refine the layer-wise
features in a cross-layer manner.

In order to leverage the complementary advantages of
both shallow layers and deep layers, we aggregate FSHF
to each individual deep layer and aggregate FSEF to each
individual shallow layer. In such a cross-layer manner, the
features extracted from each layer can be refined step by
step. Specifically, since the features of shallow layers focus
on the fine detail information but lack of semantic infor-
mation of defocus blur regions, the FSEF can provide the
needed high-level information for the localization of defocus
blur regions. Similarly, as the features of deep layers capture
semantic information but lack of fine details, the FSHF can
be used to promote the fine details preservation. In the
recurrent aggregation process, the refined feature maps from
shallow layers and deep layers are fused again to generate
refined FSHF and FSEF, respectively. Then the refined FSHF
and FSEF are aggregated respectively to the feature maps
from shallow layers and deep layers in the next recurrent
step.

In order to select the useful multi-level information with
respect to the features of each individual layer and reduce
the number of feature channels to the original number
before next aggregation, a convolutional layer is added to
the aggregated feature maps for each layer. The refined
feature maps of each layer at the j-th recurrent step can
be formulated as follows:

ReLU(W? + Cat(F) ™', FSHFI)+b’) i=m+1,---,n

- - )b )
i ReLU(W! % Cat(F/~', FSEF’) +b?)

i=1,---,m

where F] represents the feature maps for the i-th layer at
the j-th recurrent step. FSEF7 and FSHFV represent the
FSEF and FSHF at the j-th recurrent step, respectively. W7
and b] represent the convolutional kernel and bias of the
i-th layer at the j-th recurrent step. In order to narrow the
gap between shallow and deep layers, we pass the FSEF
and FSHF to a feature adaptation module (FAM) at each
recurrent step. The details of FAM will be presented in the
Subsection 3.3.

3.2 Channel Attention Module (CAM)

Previous deep learning based defocus blur detection meth-
ods [25], [26], [49], [56], [57] ignore the possible bias of dif-
ferent feature channels and regard different feature channels
contributing equally to the final result, which is not effective
in dealing with various types of information. In Figure 4c

and 4e, we show the first 36 channel-wise feature maps of
the concatenated low level shallow features and high level
semantic features in the first fusing step, respectively. As can
be seen, different feature channel contributes significantly
differently to the defocus blur detection task. On the one
hand, most of the feature channels in Figure 4c capture the
fine details of image contents, e.g., the edges of the petals.
On the other hand, the feature maps in Figure 4e usually
focus on the semantic information of the image, including
in-focus areas and the rest blurry parts, which can help
discriminate low-contrast in-focus regions. In addition, in
both Figure 4c and Figure 4e, there are many features that
would contribute little to or even impair the detection.

Therefore, we design a channel attention module (CAM)
to learn the weights for adaptively rescaling channel-wise
features and integrate the CAM into DeFusionNet to boost
the feature refining process. Different to previous channel
attention model [47], [53] which only uses global average
pooling to capture the global statistics of feature maps,
we use both global average pooling (GAP) and global
maximum pooling (GMP) to aggregate global information,
and design the CAM in a dual manner. Figure 5 briefly
presents the architecture of the proposed CAM. Given mul-
tiple channel-wise feature maps, we firstly leverage GAP
and GMP to convert channel-wise global spatial features
into vector descriptors, respectively. In such a manner, the
statistics of the vector descriptors can serve to express the
whole image [6]. In our CAM, the GAP captures the size of
blurry regions, while GMP focuses on the defocus intensity.
Denoting F = [Fy,Fa,--- ,F¢] as the concatenated feature
maps with C channels, and the size of different channels
is W x H. Then the channel-wise statistics (sqq € R¢
and s, € RY) obtained through the GAP and the GMP
operations. Specifically, the c-th element of s,, and s, can
be calculated as:

1 L&
s1' = GAP(F) = 7~ > > Felini),  (4)
i=1j=1

and
s9™ = GMP(F.) = max{F.(i,7)}. )

In order to learn the non-linear interactions between differ-
ent feature channels and non-mututually-exclusive relation-
ship between channels, we merge the two attention vectors
using element-wise summation and leverage a simple gat-
ing mechanism [6], [53] with a sigmoid function and the
final channel weights can be expressed as follows:

w = f(Wy * (ReLU(Wp %s9%) + ReLU(Wp *s9™))), (6)

where f(-) is the sigmoid gating function. Wp and Wy are
the convolution coefficients of channel-downscaling layer
and channel-upscaling layer, respectively (see Figure 5).
Then, the final weighted channel-wise feature maps can be
written as:

FY = w, - F.. @)

In Figure 4d and 4f, we intuitively show the channel weights
of the feature maps of Figure 4c and 4e, respectively. As can
be seen, the proposed CAM can effectively learn different
weights for different feature channels. In Figure 4g and 4h,
we show the weighted feature maps of Figure 4c and Figure
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(8)

(h)

Fig. 4. An intuitive representation of channel-wise feature maps their
corresponding channel weights learned by the proposed CAM. (a) Input
image, (b) the ground truth of defocus blur detection map, (c) the first
36 channel-wise feature maps of the concatenated low level shallow
features in the first fusing step, (d) the corresponding channel weights
of the feature maps in (c), (e) the first 36 channel-wise feature maps
of the concatenated high level semantic features in the first fusing step,
and (f) the corresponding channel weights of the feature maps in (e), (g)
and (h) are the weighted feature maps of (c) and (e), respectively.

GAP —p ‘-—>CD-> »

}» cu-».,"-» f -;J'—»@—» I‘
GMP—> 'I—>CD->,

GAP: Global Average Poolmg GMP: Global Max Pooling CD: Channel-downscaling
CU: Channel-upscaling  f': Sigmoid Gating ®: Element-wise Product

Fig. 5. The architecture of the proposed channel attention module
(CAM).

4e, which validate that the learned channel weights can
strengthen the role of some important feature channels as
well as weaken the influence of some useless channels.

3.3 Feature Adaptation Module (FAM)

As done in our previous work [40], the FSEF and FSHF
are used to refine the features of shallow layers and deep
layers, respectively by directly using concatenation. Since
features extracted from shallow layers focus more on fine
details of an image while features extracted from deep layers
capture more semantic information, directly concatenating
them could ignore the gap between different feature layers
since the redundancy can not be sufficiently suppressed
while the complementary can not be effectively exploited. In
addition, there are some contradictory response of different
layers, which will dilute the semantic information by adding
the FSHF to deep layers, as well as damage the details by
adding the FSEF to shallow layers. Therefore, we design
a FAM to adjust FSEF and FSHF before feature refining.
Since the operation for both FSEF and FSHF is symmetrical,
we use the same structure for FSEF and FSHE. Figure 6
briefly presents the architecture of the proposed FAM. The
two convolution layers marked in the light green box are
used to learn the feature weight of each position, and the
FSEF/FSHF are weighted by the learned weight maps. The
first convolution layer in the upper left of the light green box
is a traditional convolution operation for feature extraction,
while the second convolution layer in the lower right of the
light green box is used to learn the feature weight of each
position. In such manner, the FSEF/FSHF can be re-scaled,
i.e., the complementary information between different fea-
ture layers can be enhanced, while the contradictory infor-
mation can be effectively reduced, by using the element-
wise production. After that, the adjusted features are added
to original FSEF/FSHF for generating the output of FAM,
which is used for cross-layer feature refining. The efficacy
of FAM will be validated in the experiments section.

ﬁ Conv

I—L o _>$—>é'r>—> Cony —> ‘7'

FSEF / FSHF L Conv

Fig. 6. The architecture of the proposed feature adaptation module
(FAM).

3.4 Defocus Maps Fusing

Since the degree of defocus blur is sensitive to image scales,
multi-scale information is required for accurate defocus
blur detection. In [56], Zhao et al. proposed a multi-stream
strategy by fusing the detection results from different image
scales. However, this inevitably increase the computational
burden of the whole network. In this work, by considering
that different layers just extract features of the original
image in different scales, we impose a supervision signal
to each layer by using the deeply supervised mechanism
[43] at each recurrent step, then the output score maps of
all the layers at the last step are fused to generate the final
defocus blur map.

Specifically, we first concatenate the defocus blur maps
predicted from n different layers, then a convolution layer is
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applied on the concatenated maps to obtain the final output
defocus blur map B, which can be formulated as:

B = ReLU(Wp * Cat(B{,B5,--- ,B.) +bg), (8

where t denotes the last recurrent step; B! denotes the
predicted defocus blur map from the i-th layer at the ¢-th
step; Wp and b are the weight and bias of the convolution
layer on the concatenated defocus blur maps to learn the
relationship among these maps. Note that Hu et al. [7] used
a similar manner to aggregate deep features for saliency
detection, but they did not distinguish features of shallow
layers and deep layers.

3.5 Model Training and Testing

Our network uses the VGG [32] as backbone and we im-
plement it by Caffe [9]. We use convl_2, conv2_2, conv3_3,
conv4_3, conv5_3 and pool5 of the VGG network to rep-
resent the features of each individual layer, i.e.,, n = 6 in
DeFusionNET. The first three layers are regarded as shallow
layers, and the rest ones are set as deep layers, i.e., m = 3. In
addition, in order to enhance the discrimination capability
of feature maps at each layer, two more convolutional layers
are appended. More details will be found in the released
code.

Training: The cross-entropy loss is used for each output of
this network during the training process. For the i-th layer
at the j-th recurrent step, the pixel-wise cross entropy loss
between B} and the ground truth blur mask G is calculated
as:

W H ;
. log Pr(B] (z,y)=1|6)
LO)=->> > {~1E°’c(x,y):1>y } ©)

where 1(-) is the indicator function. The notation | €
{0,1} indicates the out-of-focus or in-focus label of the
pixel at location (z,y) and Pr(B](z,y) = 1|@) represents
its corresponding probability of being predicted as blurry
pixel or not. @ denotes the parameters of all network layers.

Based on Eq. (9), the final loss function is defined as the
loss summation of all immediate predictions:

n t
L=XLs+Y > NL(O),

i=1j=1

(10)

where Ly is loss for the final fusion layer; Ay is the weight
for the fusion layer and A} represents the weight of the i-
th layer at the j-th recurrent step. In our experiments, we
empirically set all the weights to 1.

Our model is initialized by the pre-trained VGG-16 mod-
el and fine tuned on part of Shi et al.’s public blurred image
dataset [29], which consists of 1000 blurred images and their
manually annotated ground truths. 704 of these images are
partially defocus blurred and the rest 296 ones are motion
blurred. We divide the 704 defocus blurred images into two
parts, i.e., 604 for training and the remaining 100 ones for
testing. Since the number of training images is not enough to
train a deep neural network, we perform data augmentation
by randomly rotating, resizing and horizontally flipping
all of the images and their corresponding ground truths,
and finally the training set is enlarged to 9,664 images.

We train our model on a machine equipped with an Intel
3.4GHz CPU with 128G memory and 2 GPUs (one Nvidia
GTX 1080Ti and one Nvidia Titan Xp). We optimize the
whole network by using Stochastic gradient descent (SGD)
algorithm with the momentum of 0.9 and the weight decay
of 0.0005. The learning rate is initially set to le-8 and
reduced by a factor of 0.1 at 5k iterations. The training
batch size is set to 4 and the whole learning process stops
after 10k iterations. The training process is completed after
approximately 11.7 hours.

Inference: In the testing phase, for each input image, we
feed it into our network and obtain the final defocus blur
map. Only approximately 0.056s is needed for generating
the final defocus blur map for a testing image with 320 x 320
pixels by using a single Nvidia Titan Xp GPU, which is very
efficient.

4 EXPERIMENTS
4.1 Datasets

As far as we know, there are only two public datasets avail-
able for evaluating the performance of pixel-level defocus
blur detection algorithms, they are as follows:

Shi et al.’s dataset [29] contains 704 partially defocus
blurred images with manually annotated ground truths.
Except for the first 604 images of this dataset used for
training our network, the rest 100 ones are used for testing.
DUT [56] is a new defocus blur detection dataset which
consists of 500 images and their pixel-wise annotations. This
is a very challenging dataset since a large number of images
contain homogeneous regions, low contrast focal regions
and background clutter.

Based on our observations, in most of the images of
above mentioned two datasets, the foreground objects are
usually in-focus while the background is usually blurry,
which leads to the fact that the blur detection method-
s may be biased to object regions and reduce to fore-
ground/background segmentation. In reality, foreground
objects with strong semantic meaning may also be defo-
cused. In addition, the content contained in the images of
previous datasets are easy, nearly no complex background
or foreground. With these points in mind, we collect a
new dataset (referred to as CTCUG) which contains 150
images with manual pixel-wise annotations. We invite five
students to manually annotate the defocus areas from each
image and the final annotated ground truths are obtained by
averaging the results from the five independently labelled
masks. In Figure 7, we present some example images and
their manually annotated ground truths of our dataset. In
the process of collecting our dataset, we take the following
challenging settings into consideration:

1) In most of images, the background is in-focus while
the foreground regions are blurry (see the first three
columns of Figure 7);

2) For some scenes, we take a pair of images with
different defocus areas. One of the image is with in-
focus background and out-of-focus foreground. The
other image is with out-of-focus background and in-
focus foreground (see the forth and fifth columns of
Figure 7);
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Fig. 7. Some example images and their annotated ground truths of the CTCUG dataset.

3) For the same class of objects, some of them are in-
focus while the others are out-of-focus (see the sixth
to eighth columns of Figure 7);

4) The images are with complex background and the
in-focus area has low contrast (as shown by the last
two columns of Figure 7).

These challenges will be validated in the latter subsection.
Our newly collected dataset will be made publicly available
for further defocus blur detection researches.

4.2 Evaluation Metrics

Six widely-used metrics are used to quantitatively evaluate
the performance of the proposed model: precision-recall
(PR) curves, F-measure curves, the receiver operating char-
acteristic (ROC) curve, area under the ROC curve (AUC), F-
measure scores (Fg) and mean absolute error (MAE) scores.
As an overall performance measurement, the F-measure is
defined as:

1+ ﬁg) - precision - recall

Fg = ( ; (11)

B2 - precision + recall
where 32 is set to 0.3 to emphasize precision. As neither
precision nor recall measure evaluate the true negative
saliency assignments, we also use the mean absolute error
(MAE) as a complementary. The MAE score calculates the
average difference between the detected defocus blur map
B and the ground truth G, it is computed as:

W H
1

where H and W are the height and width of the input
image, respectively.

4.3 Comparison with the state-of-the-art methods

We compare our method against other 11 state-of-the-art
algorithms, including 5 deep learning-based methods, i.e.,
multi-scale deep and hand-crafted features for defocus esti-
mation (DHDE) [25], multi-stream bottom-top-bottom fully
convolutional network (BTBNet) [56], deep blur mapping
via exploiting high-Level semantics (DBM) [20], defocus
map estimation using domain adaptation (DMENet) [15]
and our previous DeFusionNet without CAM and FAM
(CVPR19) [40], and 6 classic defocus blur detection methods,
including just noticeable defocus blur detection (JNB) [30],
discriminative blur detection features (DBDF) [29], spectral
and spatial approach (SS) [39], local binary patterns (LBP)
[46], classifying discriminative features (KSFV) [24] and
high-frequency multi-scale fusion and sort transform of

gradient magnitudes (HiFST) [1]. For all of these methods,
we use the authors’ original implementations with recom-
mended parameters.

Quantitative Comparison. Table 1 presents the compared
results of MAE, F-measure and AUC scores. It is observed
that our method consistently performs favorably against
other methods on the three datasets, which indicates the
superiority of our method over other ones. In Figure 8,
Figure 9 and Figure 10, we plot the PR curves, F-measure
curves and ROC curves of different methods on different
datasets. From the results, we observe that our method also
consistently outperforms other counterparts.

Qualitative Comparison. Figure 11 shows a visual com-
parison of our method and other ones. As can be seen,
our method generates more accurate defocus blur maps
when the input image contains in-focus smooth regions and
background clutter. In addition, the boundaries of the in-
focus objects can be well preserved in our results. It should
be noted that some previous deep neural network based
methods such as DBM [20], DMENet [15] and BTBNet [56]
can not obtain satisfactory results. Since both DBM and
BTBNet rely heavily on high-level semantic information,
there results loss a large amount of fine details of region
boundaries. DMENet aims to estimate the defocus blur
amount of different image regions, therefore, some in-focus
regions are wrongly detected as slight blur regions. As
to our DeFusionNet, both high-level semantic information
and low-level details are fully captured. Therefore, we can
obtain better results with complete blur regions. More visual
comparison results can be found in the online project page
1

Running Efficiency. Since the coding languages (Matlab,
Python and C++) and running platforms (CPU/GPU) are
different among different methods, the directly running
timing comparison makes little sense, we only report our
running time here. The full training process of the DeFu-
sionNet took only about 11.7 hours. As to the testing phase,
only one GPU (Nvidia Titan Xp) was used. The average
running time for an image of different methods on the three
different datasets are 0.097s, 0.059s and 0.068s, respectively.
Note that nearly 5 days needed for training BTBNet and
approximately 25s is needed to generate the defocus blur
map for a testing image with 320 x 320 pixels. By contrast,
our DeFusionNet is more efficient.

Convergence Property of the Training Process As stated in
section 3.5, the whole learning process of the network stops
after 10k iterations. In order to validate the convergence
property of the whole training process, we plot the training
loss with different iteration times in Figure 12. As can be

1. http:/ /tangchang.net
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Fig. 10. Comparison of precision-recall curves, F-measure curves and ROC curves of different methods on CTCUG dataset.

TABLE 1

Quantitative comparison of F-measure, MAE and AUC scores (The up-arrow 1 indicates the larger value achieved, the better performance is, while
the down-arrow | indicates the smaller, the better).

Datasets ~ Metric JNB DBDF SS LBP KSFV.  DHDE HiFST DBM DMENet BTBNet CVPR19  DeFusionNet
Fg 1t 0797 0.841 0.787 0.866  0.733 0.850 0.856 0.917 0.914 0.892 0.917 0.925
Shi et al.s dataset MAE]  0.355 0.323 0.298  0.186  0.380 0.390 0.232 0.155 0.343 0.105 0.116 0.102
AUCT  0.594 0.594 0.613  0.603  0.541 0.613 0.619 0.638 0.637 0.831 0.836 0.844
Fg 1 0748 0.802 0.784 0874  0.751 0.823 0.866 0.782 0.932 0.887 0.922 0.952
DUT MAE| 0424 0.369 029 0173  0.399 0.408 0.302 0.279 0.314 0.190 0.115 0.082
AUCT  0.547 0.573 0.607 0599  0.547 0.592 0.605 0.564 0.635 0.616 0.632 0.643
Fg 1 0724 0.740 0.741  0.805  0.607 0.811 0.785 0.832 0.845 0.827 0.891 0.899
CTCUG MAE|  0.347 0.344 0.302 0242  0.461 0.307 0.267 0.209 0.301 0.177 0.138 0.127
AUCT  0.648 0.626 0.664 0.653  0.573 0.680 0.657 0.678 0.694 0.672 0.693 0.705
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Fig. 11. Visual comparison of detected defocus blur maps generated from different methods. The results demonstrate that our method consistently
outperforms other approaches, and produces defocus blur maps more closer to the ground truth.

seen, the training loss goes stable after about 9000 iterations.
Therefore, we stop the learning process of the network after
10k iterations for reliable estimation.

4.4 Ablation Analysis

Effectiveness of FFRM. In order to validate the efficacy of
FFRM, we change the network by fusing the feature maps
from all of layers to one group at each recurrent step, then
the fused features are used to refine the features of each
layer. We denote this network as noFFRM for comparison.

The F-measure, MAE and AUC scores on the three datasets
are shown in Table 2. As can be seen, our DeFusionNet
with FFRM module performs better than noFFRM, which
demonstrates that the cross-layer feature fusion manner can
effectively capture the complementary information between
shallow features and deep semantic features for improving
the final results. In addition, noFFRM also performs better
than other previous methods, this also validates the efficacy
of our proposed network structure.

Effectiveness of CAM and FAM. In order to validate the
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Fig. 12. Training loss with different iteration times.

efficacy of CAM and FAM, we remove the module of CAM
and FAM from DeFusionNet at each recurrent step, then the
rest of the network (CVPR19) is the same as [40]. We also
present the F-measure, MAE and AUC scores of CVPR19
on the three datasets in Table 2. The corresponding PR
curves, F-measure curves and ROC curves are plotted in
Figure 8, Figure 9 and Figure 10. As can be seen, without
CAM and FAM, the final results are obviously degraded,
which demonstrates the efficacy of the CAM and FAM.
In Figure 13, we give some visual results with/without
CAM and FAM. As can be seen, with CAM and FAM,
DeFusionNet can focus on the most discriminative features
and weaken the influence of noisy features, which produces
more pure detected results. In addition, inorder to validate
the efficacy of each single component, we only remove CAM
or FAM from DeFusionNet, and denote the rest part as “with
FAM and without CAM” (WFAMwoCAM) and “with CAM
and without FAM” (wCAMwoFAM). The corresponding F-
measure, MAE and AUC scores on different datasets are
also shown in Table 2.

(b) GT (c) DeFusionNet (d) CVPRI19

(a) Input

Fig. 13. Visual comparison of detected defocus blur maps generated by
DeFusionNet with/without CAM and FAM. The results demonstrate that
DeFusionNet can obtain more accurate results by using CAM and FAM.

Effectiveness of GAP and GMP. In fact, both GAP and GMP
associate the feature maps with the final output. However,
GMP just focuses on the most important region of a feature
map while GAP focuses on every region of a feature map.
In practical, for human visual system, the in-focus objects in
an image attract more attention. On the one hand, GMP can
help the network select the most important region which
represent in-focus part of an image. In such a manner, GMP
determines whether a region is blurry, thus it reflects the
defocus intensity. On the other hand, GAP takes all of the re-
gions into consideration, it helps the network to distinguish
different blurry regions from an image, even the regions are
with different defocus intensity, therefore, it reflects the size
of blurry regions. In Figure 14, we give two visual results
of DeFusionNet with/without GAP/GMP. As can be seen,
our DeFusionNet without GAP (denoted as noGAP) can
suppress some noisy regions, but the defocus blur regions
are not complete. On the contrary, our DeFusionNet without
GMP (denoted as noGMP) can detect the complete blurry
regions, but the results are mixed with some noisy regions.
By using both GMP and GAP, DeFusionNet can detect more
pure defocus blur regions from an image.

h ] ) 3

(b) GT (c) DeFusionNet  (d) noGAP (d) noGMP

(a) Input

Fig. 14. Visual comparison of detected defocus blur maps generated by
DeFusionNet with/without GMP/GAP.

Effectiveness of the Final Defocus Maps Fusion. By
considering that the degree of defocus in an image is
sensitive to image scales, we fuse the output of different
layers at the last recurrent step to form the final result.
We also perform ablation experiments to evaluate the
effectiveness of the final fusing step. The final outputs
of all the layers are represented as DeFusionNet_O1,
DeFusionNet_0O2, DeFusionNet_ O3, DeFusionNet_0O4,
DeFusionNet_O5, DeFusionNet_O6. We also show the F-
measure, MAE and AUC scores in Table 2 and the precision-
recall curves of these outputs in the supplementary. It can
be seen that the fusing mechanism effectively improves the
final results.

Effectiveness of the Times of Recurrent Steps. In our
DeFusionNet, we fuse and refine the features of each layer
in a recurrent and cross-layer manner, the feature maps can
be improved step by step. In order to validate whether the
features can be improved in a recurrent manner, we report
the F-measure, MAE and AUC scores by using different
times of recurrent step in Table 3. In Figure 15, we also give
some visual results of different time steps in Figure 15. As
can be seen from Table 3 and Figure 15, the more times of
recurrent step, the better results can be obtained. In addition,
it should be noted that DeFusionNet can obtain relatively
stable results when the times of recurrent is 3. Therefore, we
empirically set 3 times of recurrent step in our experiments
for the tradeoff between effectiveness and efficiency.
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TABLE 2
Ablation analysis using F-measure, MAE and AUC scores

Shi et al.’s dataset DUT CTCUG
Methods

Fs MAE AUC Fz MAE AUC F53 MAE AUC
woFFRM 0.909 0.152 0.830 0.904 0.126 0.631 0.876 0.155 0.676
CVPR19 0917 0.116 0.836 0922 0.115 0.632 0.891 0.138 0.689
wFAMwoCAM 0.921 0.110 0.840 0.931 0.106 0.637 0.894 0.132 0.695
wCAMwoFAM 0.922 0.105 0.842  0.943 0.096 0.640 0.896 0.122 0.699
DeFusionNet_O1 0.913 0.115 0.828 0.932 0.114 0.631 0.894 0.133 0.688
DeFusionNet_O2 0916 0.116 0.829 0.927 0.113 0.635 0.895 0.135 0.688
DeFusionNet_O3 0917 0.116 0.831 0.928 0.114 0.636 0.893 0.132 0.689
DeFusionNet_O4 0.918 0.122 0.833 0.934 0.121 0.638 0.892 0.131 0.687
DeFusionNet_O5 0917 0.114 0.829 0.933 0.112 0.632 0.896 0.132 0.693
DeFusionNet_O6 0916 0.110 0.834 0.938 0.110 0.637 0.895 0.130 0.694
DeFusionNet 0.925 0.102 0.844 0.952 0.082 0.643 0.899 0.127 0.705

TABLE 3

Ablation analysis of the times of recurrent steps (Step_k represents
using k times of recurrent steps in DeFusionNet).

Shi et al.’s dataset DUT CTCUG
Recurrent Step

Fs MAE AUC Fs MAE AUC Fs MAE AUC
Step_1 0.716 0.235 0.772  0.872 0.202 0.585 0.785 0.224 0.621
Step_2 0.899 0.121 0.820 0.913 0.122 0.627 0.859 0.176 0.676
Step_3 0.925 0.102 0.844 0.952 0.082 0.643 0.899 0.127 0.705
Step_4 0.925 0.101 0.845 0.952 0.081 0.644 0.899 0.125 0.706
Step_5 0.926 0.100 0.845 0.954 0.081 0.645 0.901 0.125 0.706
Step_6 0.926 0.100 0.846 0.954 0.080 0.645 0.901 0.125 0.707

Input GT

step 1

step 2 step 3 step 4

Fig. 15. Visual results at different time steps.

4.5 Challenges of the New Dataset

As introduced in Subsection 4.1, in order to validate de-
focus blur detection algorithms, we collect a new dataset
CTCUG by considering some challenging cases such as
complex background, in-focus areas with low contrast, in-
focus background and out-of-focus foreground, and same
class of objects with different defocus condition. The last
four rows of Figure 11 show some results obtained by
different defocus blur detection methods. As can be seen,
nearly all of the algorithms fail to well separate the defocus
blur regions from original input images. For example, in the
forth row from the last, some of plant leaves in the input
images are in-focus while some of plant leaves are out-of-
focus, and all of the plant leaves have the same color and
texture, which makes the separation of defocus blur regions
difficult. There are some complex background in the input
image of the second row from the last, the results of different
methods are also affected by the background clutter.

5 CONCLUSIONS

In this work, we propose a deep convolutional network
(DeFusionNet) for efficient and accurate defocus blur de-
tection. Firstly, DeFusionNet combines both shallow-layer

features and deep-layer features for generating the final
high-resolution defocus blur maps. Secondly, DeFusionNet
fuses and refines the features from different players in a
cross-layer manner, which can effectively capture the com-
plementary information between shallow features and deep
semantic features. Finally, DeFusionNet obtains the final
accurate defocus blur map by fusing the outputs from all
the layers. By considering that different scales of receptive
views produce the features with different extents of discrim-
ination, we add a channel attention module after the feature
fusing at each step to select more discriminative features
to refine the layer-wise features. In order to narrow the
gap between different feature extraction layers, we embed
a feature adaptation module before In addition, in order to
promote further study and evaluation of different defocus
blur detection models, we collect a new dataset consists of
150 challenging images and their pixel-wise defocus blur
annotations. Extensive experimental results demonstrate
that the proposed DeFusionNet consistently outperforms
other state-of-the-art methods in terms of both accuracy and
efficiency.
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