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Yue Liu*, Sihang Zhou*, Xinwang Liuf, Senior Member, IEEE, Wenxuan Tu, Xihong Yang,
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Abstract—Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different clusters
without human annotations, is a fundamental yet challenging task. However, we observed that the existing methods suffer from
the representation collapse problem and easily tend to encode samples with different classes into the same latent embedding.
Consequently, the discriminative capability of nodes is limited, resulting in sub-optimal clustering performance. To address this problem,
we propose a novel deep graph clustering algorithm termed Improved Dual Correlation Reduction Network (IDCRN) through improving
the discriminative capability of samples. Specifically, by approximating the cross-view feature correlation matrix to an identity matrix,
we reduce the redundancy between different dimensions of features, thus improving the discriminative capability of the latent space
explicitly. Meanwhile, the cross-view sample correlation matrix is forced to approximate the designed clustering-refined adjacency matrix
to guide the learned latent representation to recover the affinity matrix even across views, thus enhancing the discriminative capability
of features implicitly. Moreover, we avoid the collapsed representation caused by the over-smoothing issue in Graph Convolutional
Networks (GCNs) through an introduced propagation regularization term, enabling IDCRN to capture the long-range information with
the shallow network structure. Extensive experimental results on six benchmarks have demonstrated the effectiveness and the efficiency

of IDCRN compared to the existing state-of-the-art deep graph clustering algorithms.

Index Terms—Deep Graph Clustering, Graph Neural Network, Self-Supervised Learning, Representation Collapse.
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1 INTRODUCTION

Eep graph clustering is a fundamental yet challenging task
D that aims to reveal the underlying graph structure and divide
the nodes into different clusters in a self-supervised manner. GCN
[I1], which possesses the powerful graph representation learning
capability, has achieved promising performance in the attribute
graph clustering task. Consequently, based on GCN, many deep
graph clustering methods are proposed [2], [3], [4], [5], [6], [7],
(81, (90, (101, (111, (12, (13].

Although promising performance has been achieved, we ob-
served that the existing deep graph clustering algorithms [9],
[[14]], [15] suffer from the representation collapse issue [16] and
easily embed the nodes from different classes into the same
embedding. To solve this problem, many attempts have been made.
The contrastive-strategy-enhanced method [15] pushes negative
sample pairs away while pulling positive sample pairs together,
which to some extent alleviating the collapsed representations.
However, since the definition of positive and negative sample pairs
is not accurate enough, the learned latent features are still indis-
criminative. SDCN [9] exploits both the structural information
and attribute information with an information transport operation,
which alleviates the over-smoothing problem. However, SDCN [9]
neglects the correlation of the latent embeddings, thus leading to
sub-optimal clustering performance. We conduct a simple experi-
ment on the DBLP dataset to illustrate this issue. Specifically, in
the experiment, we first extract the node embeddings of four well-
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Figure 1: Visualization of the sample similarity matrices in the
latent space learned by the four compared algorithms, i.e., GAE
[14], MVGRL [15]], SDCN [9], and our proposed method (ID-
CRN), on the DBLP dataset. The sample order is rearranged to
make those from the same cluster beside each other.

(c) SDCN (d) IDCRN

trained deep graph clustering algorithms, i.e., GAE [14], MVGRL
[[15], SDCN [9]], and our proposed algorithm (IDCRN). Afterward,
we calculate the cosine similarity between the embedded samples
in the latent space and visualize the resultant similarity matrix for
each algorithm. From Fig. |1| (a-c), we observe that although the
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problem of over-smoothing is alleviated to different extents, the
intrinsic four-dimensional cluster structure is not well revealed by
the compared three algorithms [9]], [14], [[15]]. This phenomenon
illustrates that the representation collapse problem is still an open
problem that limits the clustering performance of the existing deep
graph clustering algorithms.

To address the representation collapse problem, we propose
a novel contrastive-learning-based deep graph clustering network
termed Improved Dual Correlation Reduction Network (IDCRN)
by improving the discriminative capability of nodes. In our algo-
rithm, the discriminative capability is improved in two aspects,
i.e., the feature aspect and the sample aspect. Specifically, to
the feature aspect, we first construct two augmented graph views
and encode the nodes with a siamese network. Subsequently, we
reduce the redundancy between different dimensions of features
via approximating the cross-view feature correlation matrix to the
identity matrix. With this setting, the discriminative capability
of the latent space is enhanced explicitly, thus alleviating the
collapsed representation. Moreover, in the sample aspect, we
force the cross-view sample correlation matrix to approximate
the high confident clustering results refined affinity matrix. In
this manner, we guide the learned latent representation to recover
the affinity matrix even across views, thus improving the feature
discriminative capability implicitly. As shown in Fig. [1| (d), we
found that, with our improved dual correlation reduction module,
IDCRN could better reveal the latent cluster structure among
data than the other compared algorithms [9], [14], [15]. Besides,
IDCRN saves more GPU space than the contrastive-learning-based
algorithms since it eliminates the space-consuming negative sam-
ple generation operation. For instance, our proposed method saves
about 54% GPU memory on average compared to MVGRL [[15]
during training on DBLP, CITE, and ACM datasets. Moreover,
motivated by the Propagation-regularization (P-reg) [17], we avoid
the collapsed representations caused by over-smoothing in GCN
by a propagation-regularization term, thus further improving the
clustering performance of the proposed method.

This work is an extended version of our AAAI 2022 con-
ference paper, i.e., dual correlation reduction network (DCRN)
[[18]]. In our conference paper, both the sample-level and feature-
level cross-view correlation matrices are forced to approximate the
identity matrices. However, through our observation and experi-
mental validation, we found that, to improve the discriminative
capability, instead of just guiding the network to tell apart samples
across views, guiding the network to reveal the underlying sample
distribution would endow it with better discriminative capability.
To this end, we approximate the cross-view sample correlation
matrix to a designed clustering-refined affinity matrix instead of
the identity matrix. In this manner, the discriminative capability
of latent features wound be enhanced, thus further improving
the clustering performance. Take the clustering results on DBLP
dataset as an example, our proposed algorithm improves 5.21%
on the metric of ARI compared to DCRN [18]]. Moreover, more
sufficient experimental studies are conducted to demonstrate the
effectiveness and efficiency of the proposed algorithm. Three
contributions of this work are listed as follows.

« A novel contrastive-learning-based method termed IDCRN is
proposed to solve the representation collapse problem in the
existing deep graph clustering methods.

e We propose two strategies to enhance the discriminative
capability of samples implicitly and explicitly. Besides, com-
pared to other contrastive-learning-based methods, IDCRN
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saves more GPU memory since it gets rid of the complicated
negative sample generation operation.

o More sufficient experimental results on six benchmarks have
verified the superiority of IDCRN compared to the existing
state-of-the-art deep graph clustering methods.

2 RELATED WORKS
2.1 Deep Graph Clustering

Graph Convolutional Networks (GCNs), which possess the power-
ful graph representation learning capability, have achieved impres-
sive performance in the field of deep graph clustering. Specifically,
the authors of GAE / VGAE [14] firstly design a graph encoder to
learn the node embeddings from both the attributes and the struc-
ture information and then reconstruct the adjacency matrix by an
inner product decoder. Based on GAE / VGAE, recent researches,
including DAEGC [2] and GALA [6] improve the clustering
performance with the attention mechanism and the Laplacian
sharpening, respectively. Moreover, other two methods termed
ARGA / ARVGA [3]]| and AGAE [4] enhance the discriminative
capability of samples by generative adversarial learning, thus
achieving the promising clustering performance. Though ahead
mentioned works have improved the clustering performance of
early works, the over-smoothing problem is still not solved. SDCN
/ SDCNq [9] and DFCN [[11] are proposed to jointly train an AE
[19] and a GAE [14] to avoid the over-smoothing issue through
the designed information transport operation and the attribute-
structure fusion strategy, respectively. Similar to DFCN [11]],
AGCN [10] also demonstrates the effectiveness of the attribute-
structure fusion module. More recently, the contrastive-learning-
based methods including MCGC [20] and MVGRL [15] aim to
learn consensus node embeddings from different views of the
graph by introducing the contrastive loss, thus further improving
the clustering performance. Although recent works have proved
the effectiveness of learning consensus information from different
views of the graph data, we found that they suffer from the
representation collapse problem and easily map samples from dif-
ferent classes into the same embedding, leading to the unsatisfied
clustering performance. To avoid the collapsed representation, we
propose a novel contrastive-learning-based deep graph clustering
method by improving the discriminative capability of the learned
embeddings in the sample and feature aspects.

2.2 Representation Collapse

Representation collapse is a common problem that the network
tends to encode samples from different classes into the same
representation in the field of the self-supervised learning [16].
Contrastive learning [21] is one possible way to solve this
problem. Specifically, a pioneer termed MoCo [22] adopts the
momentum encoder to keep the consistency of the negative pair
embeddings from the designed memory bank. After that, another
effective contrastive learning method termed SimCLR [23]], de-
fines the “negative” and “positive” sample pairs and then pushes
the “negative” samples away while pulling closer the “positive”
samples. Subsequently, BYOL [24] introduces three strategies,
including momentum encoder, predictor, and gradient stopping
to address this problem. Different from them, a scalable online
clustering method named SwAV [25]] alleviates the collapsed rep-
resentations by mapping the representations into different clusters.
Moreover, SimSiam [26]] has demonstrated that the stop-gradient
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mechanism is crucial to alleviate the collapsed representations
without negative samples. More recently, Barlow Twins [27]
and VICREG |[28| propose the effective yet simple redundancy
reduction mechanisms to alleviate the representation collapse issue
even without the momentum encoder, the negative sample pairs,
or the gradient stopping mechanism. Motivated by their success
[27], [28], DCRN [18] is designed to solve the representation
collapse problem through reducing the correlation in the sample
and feature aspects. Following DCRN [[18]], we further enhance the
discriminative capability of learned node embeddings by guiding
the network to reveal the underlying sample distribution, thus
further improving the clustering performance.

3 PROPOSED METHOD

In this section, we propose a novel contrastive-learning-based
graph clustering method termed Improved Dual Correlation Re-
duction Network (IDCRN) to solve the representation collapse
issue by improving the discriminative capability of the node
embeddings. Fig. [2] illustrates that IDCRN mainly contains two
components including graph augmentation module, and Improved
Dual Correlation Reduction Module (IDCRM). In what follows,
we first define the notations and formulate the problem. Subse-
quently, we will detail graph augmentation module, IDCRM, and
the overall objective function.

3.1 Notations Definition and Problem Formulation

Let V = {v1,09,..
and £ be a set of edges. In the matrix form, X €
and A € RY*N denote the node attribute matrix and the
original adjacency matrix, respectively. Then G = {X,A} de-
notes an undirected graph. The degree matrix is formulated as
D = diag(dl,dg, ey dN) € RV*N and d; = Z(Uq‘,,vj)ég Qij-

The n0£malizeld adjacency matrix A € RM*N s calculated

.,un} be a set of N nodes with C' classes
RNX D

by D ZAD °, where A € RN*N denotes _the self-looped
adjacency matrix and D is the degree matrix of A. Besides, || - ||
denotes the square norm. The notations are summarized in Table

In this paper, we aim to group the nodes into several disjoint
groups in the unsupervised manner. To be specific, we first embed
the nodes into the latent space without labels and then directly
performance clustering algorithm K-means [29] over the learned
embeddings.

3.2 Graph Augmentation Module

In the field of self-supervised graph representation learning, sev-
eral works [15]], [32], [33]] have demonstrated that, the network
would learn richer node representations from different augmented
graphs. Motivated by their success, we adopt the augmentations
on graphs to improve the discriminative capability of node repre-
sentations. As illustrated the graph augmentation module in Fig.
two types of augmentations are considered in our proposed
method, i.e., feature perturbation and structure construction.

3.2.1 Feature Perturbation

First, we utilize an attribute-level augmentation, i.e., feature per-
turbation, which disturbs the attribute of nodes in the graph. To be
specific, we firstly generate the random noise matrix N € RNV* P,
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3
Notations Meanings
X € RM*P  The attribute matrix
A € RV The original adjacency matrix
A € RN The self-looped adjacency matrix
A € RM*Y  The normalized adjacency matrix
A7 € RV*N  The KNN graph adjacency matrix
AY € RV*N  The graph diffusion matrix
Z’ ¢ RV*4  The node embedding in k-th view
Z" € R™K  The cluster-level embedding in k-th view
Z € RV*?  The clustering-oriented node embedding
SV € RV*N  The cross-view sample correlation matrix
S” € R¥™?¢  The cross-view feature correlation matrix
T € RM*Y  The clustering-refined affinity matrix
Q € RV The soft assignment distribution
P € RV*Y  The target distribution

Table 1: Notation summary table

which is sampled from a Gaussian distribution N(1, 0.1). Subse-
quently, we calculate the perturbated attribute matrix X € RV *P
as formulated:

X=X®ON, )

where ©® denotes the Hadamard product [34].

3.2.2 Structure Construction

Besides, for the structure-level augmentations, we consider two
structure construction strategies. The first strategy is the KNN
graph adjacency matrix construction based on the feature similar-
ity [35]]. Specifically, we calculate the cosine similarity between
nodes in the graph and then generate the KNN graph adjacency
matrix Af € RN*P by the K-Nearest Neighbors algorithm
(KNN) [36] as formulated:

xx”
|1X]11X]|

where K NN(-) denotes the KNN algorithm [36] and
Softmax(-) denotes the softmax function [37] for normalization.
For the number of nearest neighbors € in the KNN algorithm
[36], we set it to 5 in our model. To another strategy, we adopt
the generalized graph diffusion utilized in MVGRL [15]], which
capture the local and global information of a graph structure.
The generalized graph diffusion matrix G € RN*Y could be
formulated as:

Al = Softmaz(KNN( ), )

G=> 6,1 3)
k=0

where 0, € [0, 1] is the coefficient k-order structure information
and Y 32 0 = 1. Besides, T € RV*¥ denotes the generalized
transition matrix. Actually, we adopt a special case of the general-
ized graph diffusion, i.e., Personalized PageRank (PPR) algorithm
[38], which sets T = A and 6 = a(1 — ). Thus, the graph
diffusion matrix could be formulated by the closed-form solution
to PPR as follow:

A =a(ly — (1 —a)A)7?, (4)

where « is the teleport (or restart) probability and Iy € RV*Y
denotes an identity matrix.
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Figure 2: Illustration of the training process of the proposed IDCRN. In the graph augmentation module, two different minor Gaussian
perturbations are added to the attribute matrix to generate two forms of the same matrix. The graph structure is strengthened with
two manners, i.e., graph diffusion and KNN graph construction based on similarity to improve the graph quality. After the data
augmentation, the generated attribute and graph structure pairs are embedded with a siamese network into the latent space. Then, by
reducing the feature redundancy and correcting the embedded sample distribution with the improved dual correlation reduction module
(IDCRM) in Fig.|3| we improve the discriminative capability of the network. Finally, the two embeddings are merged to perform sample
reconstruction and K-means clustering [29], which is guided by the widely-used distribution alignment loss [2], [9], [[L1], [30]], [31].

Based on the feature perturbation and the structure construc-
tion, two augmented graphs G* = {X,Af} and G* = {X,A%}
are generated. In what follows, we aim to guide our network to
learn the more discriminative embeddings from two augmented
views of the graph.

3.3 Improved Dual Correlation Reduction Module

In this section, we propose Improved Dual Correlation Reduction
Module (IDCRM) to improve the discriminative capability of
the node embeddings in two aspects, i.e., the sample aspect
and the feature aspect, thus avoiding the representation collapse
problem. Following the above ideas, two strategies termed Affinity
Recovery Strategy (ARS) and Redundancy Reduction Strategy
(RRS) are designed in IDCRM as shown in Fig. 3]

3.3.1 Affinity Recovery Strategy

To the sample aspect, we design Affinity Recovery Strategy
(ARS) to enhance the feature discriminative capability implicitly.
Specifically, the proposed ARS contains the following three steps.

First, we encode two graphs G and G2, which are generated
by the graph augmentation module, into two-view node embed-
dings Z"* and Z"? with a siamese graph encoder [11]].

Second, the cross-view sample correlation matrix SN S
RM*N whose elements comprised between -1 and 1, could be
formulated as:

(2) (2°)"
S'Z/\/:%, V’L,j€[17N}, (5)
o1z NZE

where the element Sﬁ\j/ is the cosine similarity between Z;* and
Z;.’Q. Besides, Z;* and Z?"‘ denote i-th node embedding of the first
view and j-th node embedding of the second view, respectively.

Subsequently, we force the cross-view sample correlation
matrix 87 to approximate the clustering-refined affinity matrix
T € RY*N as formulated:

1
ﬁN:ﬁZ SV —1)?

Zzll SN

homogeneity

+ZZ]1° (8¥)%), ©

heterogeneity

where IL%j denotes if T;; is equal to 1 while IL% denotes if T;;
is equal to 0. We design T in two steps as shown in the left part
of Fig.[3] (1) Considering the homogeneity principle [39], which
indicates that nodes from the same class tend to form edges, we
initialize T with A, i.e., the self-looped adjacency matrix. (2) T is
refined with the 60% high confident clustering resultant samples.
To be specific, we construct pseudo labels for these samples
based on the cluster-ID and further add / remove edges when the
paired samples have the same / different pseudo labels. It’s worth
mentioning that the samples, which are closer to the corresponding
cluster centers, have higher confidence in K-means clustering
algorithm [29]. In this manner, the proposed clustering-refined
affinity matrix T could better reveal the homogeneity between
the nodes from the same categories and the heterogeneity between
the nodes from the different categories.

In Eq. (6), the homogeneity term pulls together the nodes from
the same category across two views. Differently, the heterogeneity
term pushes away the samples from different categories across
two views. In this manner, our proposed ARS guides the learned
representation to recover the affinity matrix even across views,
thus improving the feature discriminative capability implicitly.

3.3.2 Redundancy Reduction Strategy

In addition to the sample aspect, we further consider the feature
aspect to reduce the redundancy between different dimensions of
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Figure 3: Illustration of the Improved Dual Correlation Reduction
Module (IDCRM). Our proposed IDCRM aims to improve the
discriminative capability of the embeddings in two aspects, i.e., the
sample aspect and the feature aspect. Specifically, to the feature
aspect, we reduce the redundancy between different dimensions
of features via approximating the cross-view feature correlation
matrix to the identity matrix, thus enhancing the discriminative
capability of the latent space explicitly. Moreover, in the sample
aspect, we force the cross-view sample correlation matrix to
approximate the high confident clustering results refined affinity
matrix. With this setting, we guide the learned latent representation
to recover the affinity matrix even across views, thus improving
the feature discriminative capability implicitly.

the latent features. Guided by this idea, anther effective strategy
termed Redundancy Reduction Strategy (RRS) is designed as
illustrated in the right part of Fig. [3] To be specific, our proposed
RRS contains the following three steps.

We first utilize a readout function R(-) : RN — R K (o
obtain the cluster-level embeddings 7" , Z” € RK from the
node embeddings Z"',Z"2. Here, to the readout function R, we
first divide the samples into K groups and then output the average
value of each group.

Second, similar to Eq. (E]) we calculate the cross-view feature
correlation matrix S € RN *Y as formulated:

SV FV2\T
Sf;f;zvl)'l(nzijvz”a Vivje [Ld]a @)
i J
where S{; actually denotes the cosine similarity between i-th
dimension feature in the first view and j-th dimension feature
in the second view.

Subsequently, different from Eq. (6)), we force the cross-view
feature correlation matrix 7 to approximate an identity matrix
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I; € R%*4 as formulated:

1
Lp= 2> (8 -1’

1 d 2 1 d 2
=ﬁ_2;(55_1) +dz_dZ;;(S£) ’
i= J7

1=

®)

where d denotes the dimension of learned embedding.

We analyze Eq. that the first term indicates that the same
dimensions of the learned features from two augmented views are
enforced to agree with each other. On the contrary, the second term
decorrelates the different dimensions of the latent representations.
By this way, the redundant information in the learned features
is reduced and then the discriminative capability of features
is enhanced explicitly, thus avoiding the representation collapse
problem.

During training process of the network, we adopt a propagation
regularization [17] to alleviate over-smoothing as formulated:

Lr = JSD(Z, AZ), ©)

where JSD(-) is the Jensen-Shannon divergence [40]. In this
manner, IDCRN is enabled to capture long-range information with
the shallow network.

3.3.3 Fusion and Clustering

Under the constraints of ARS and RRS, we combination the two
views of the node embeddings in a linear manner as formulated:

1
Z= (2" +2%), (10)

where Z € RV >4 denotes the resultant clustering-oriented node
embeddings. Subsequently, we directly perform K-means algo-
rithm [29]] over Z and obtain the clustering results.

In summary, the loss function of the proposed IDCRM could
be formulated as follows:

Lipcrm =Ly + Lp + VLR, (11)

where 7 is a trade-off hyper-parameter. Technically, in the pro-
posed IDCRM, we consider to enhance the discriminative capa-
bility of the node embeddings from both the sample and feature
perspective. Under the constraint of IDCRM, our network is
guided to reveal the underlying sample distribution and meanwhile
the redundancy in the learned features could be filtered out. In this
manner, our model would learn more discriminative embeddings
to avoid the collapsed representation and further improve the
clustering performance.

3.4 Overall Objective Function

The overall objective function of IDCRN contains three parts, i.e.,
the reconstruction loss, the clustering loss, and the loss of IDCRM
as follows:

L=Lrpcrm + Lrec + M\LkL, (12)

where Lrpc is the MSE reconstruction loss adopted in [11]].
And Lk denotes the KL divergence [41]], i.e., a widely-used
clustering loss in [2], [9, [11]], [30]], [31]]. Here, we first generate
a soft assignment distribution Q € R™ *¢ and a target distribution
P € RV*C over the node embeddings Z. And then we align them
by Lk to guide the network. The detailed procedure of IDCRN
is shown in Algorithm



oNOYTULT D WN =

*****For Peer Review Only*****

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6
Algorithm 1 IDCRN Dataset Samples Dimensions Classes

Input: An undircted graph: G = {X,A}; The cluster number C; DBLP 4057 334 4
Iteration number ¢; Hyper-parameters ~y and A. CITE 3327 3703 6
Output: The clustering result O. ACM 3025 1870 3
1: Utilize the proposed graph augmentation module to generate two AMAP 7650 745 8
) 1 e At 2 . PUBMED 19717 500 3
augmented graph views G- = {X,A’ } and G* = {X,A"}; CORAFULL 19793 8710 70

: Pre-train the feature extraction encoder to obtain Z;

: Initialize the cluster centers by performing K-means over Z;

fori=1tot do
Utilize tllglfeaturgvgxtraction encoder to obtain Z** and Z"?;
Obtain Z = and Z ~ by the readout function R;
Calculate S and $7 by Eq. (5) and Eq. (7), respectively;
Conduct the Affinity Recovery Strategy and Redundancy Re-
duction Strategy by Eq. [f]and Eq. [§] respectively;

9:  Obtain Z by fusing Z** and Z"* in Eq. (10);

10:  Calculate Lipcrm, LrEC, and Lk 1, respectively.

11:  Optimize the whole network by minimizing £ in Eq. (12);

12: end for

13: Obtain O by performing K-means over Z.

14: return O

A A o

4 EXPERIMENTS

4.1 Datasets

To verify the effectiveness and efficiency of IDCRN, abundant
experimental studies are conducted on six graph clustering bench-
marks, including ACM [9], CITE [9], DBLP [9], AMAP [42],
PUBMED [43], and CORAFULL [44]. We list the statistics
of these datasets in Table [2| and the detailed descriptions are
summarized as follows:

e ACM [9]: It is a network of the papers. An edge will be
constructed between two papers if they are written by the
same author. The features of the papers are the bag-of-words
of the keywords. The papers published in MobiCOMM, SIG-
COMM, SIGMOD, KDD are selected and divided into three
classes, including data mining, wireless communication, and
database.

o CITE [9]: This citation network consists of a set of citation
links between different documents whose feature vectors
are the sparse bag-of-words. The labels are divided into
the six areas including HCI, machine language, information
retrieval, database, artificial intelligence, and agents.

e DBLP [9]: This author network contains authors from four
areas including information retrieval, machine learning, data
mining, and database. The edge in constructed between two
authors if they are the co-author relationship. The features of
the authors are the bag-of-words of keywords.

o AMAP [42]]: This is a co-purchase graph from Amazon. The
nodes in the graph denote the products and the features are
the reviews encoded by the bag-of-words. The edges indicate
whether two products are frequently co-purchased or not. The
nodes are divided into eight classes.

o PUBMED [43]]: This is a citation network, which contains
scientific publications from the PubMed database. The nodes
are divided into three classes and links indicates the citation
between different publications. The publications in the graph
are described by a TF/IDF weighted word vector from a
dictionary which consists of 500 unique words.

e CORAFULL [44]: The is a citation network consists of
19793 scientific publications classified into one of seventy
classes. This citation network includes 65311 links.

Table 2: Dataset summary

4.2 Experiment Setup
4.2.1 Training Procedure

The deep learning platform and the GPU of all experiments
are PyTorch and an NVIDIA 3090. The training process of our
network consists of three steps. Following DFCN [11]], we inde-
pendently pre-train the sub-networks for 30 epochs by minimizing
the reconstruction loss Lrgc. Afterward, we obtain the initial
clustering centers by integrating two sub-networks into a united
framework and training another 100 epochs. Then we fine-tune our
whole network with 400 epochs until convergence by minimizing
the loss calculated in Eq. Consequently, we perform clustering
on the embeddings Z by K-means algorithm [29]. In the compare
experiments, we conduct ten runs for all methods and report the
average values with standard deviations of four metrics to alleviate
the random seed influence.

4.2.2 Parameters Setting

To ARGA / ARVGA [3], MVGRL [15], and DFCN [L1], we
reproduce the average values with standard deviations as results by
adopting the corresponding source code with the original literature
setting. To MCGC [20], for fairness, we merely adopt and run
their source code on the graph datasets in Table |2} For other
baselines, we list the corresponding results reported in DFCN
[11]. In our proposed method, we utilize DFCN [11]] as our
feature extractor. Besides, our network is optimized with the Adam
optimizer [45]]. The learning rate of our IDCRN is set to 5e-5 for
ACM, le-3 for AMAP, le-4 for DBLP, le-5 for CITE, PUBMED,
and CORAFULL, respectively. The teleport probability « in the
Personalized PageRank (PPR) algorithm [38]] is set as 0.1 for
PUBMED, 0.3 for ACM, and 0.2 for other datasets. Afterward,
€ in KNN algorithm [36|] and K in readout function R(-) are
fixed as 5 and the number of clusters C'. For the trade-off hyper-
parameters A\ and -y, we respectively set them as 10 and 1e3.

4.2.3 Metrics
To comprehensively verify the superiority of the compared meth-
ods, the clustering performance is evaluated by four metrics [46],
[47], [48]l, [49], [50], i.e., ACC, NMI, ARI, and F1. In more detail,
ACC could be calculated as follow:

>im1 @l map(ci))

ACC = , (13)
n

where ¢; and [; respectively denote the predicted cluster ID and
the label for the i-th sample. The¢(-) is an indicator function as
formulated:
1 if l; = map(c;),
li,map(c;)) = 14
ol p(ci) {O otherwise. (14
The best map from the predicted cluster ID c¢; to class ID could be
constructed by the Kuhn-Munkres algorithm [51], i.e., the map(-)
function.

Page 6 of 22
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Another critical metric macro Fl-score, which indicates a
balance of precision and recall, cloud be calculated as formulated:
P-R
Fl=2- ——. (15)
P+R
In detail, P = TP/(TP + FP) is the precision value and
R = TP/(TP + FN) is the recall value. TP, FP, and FN denotes
True Positive error, False Positive error, and False Negative error,
respectively.
A mutual information score based metric named NMI is
widely used in clustering tasks since it is robust to the unbalanced
label distribution. It is defined as:

B 250, 3, p(w, y)log 5
i p(xi)log(p(x:)) + 3, p(y;)log(p(y;))’
where x, y denote the distribution of the predicted results and the
ground truth, respectively.
Different from NMI, ARI is based on the similarity of pairwise

labels between the ground truth and predicted results as formu-
lated:

NMI =

(16)

Expected index

Index

=12

ARI = il : d ,
1 . o . "
2 Z(az)"'Z(bz]) o Z(z)Z(bﬁ) /(2)
7 J T J
Max index Expected index

(7
where n is the number of all pairs, a is the number of pairs with the
same cluster, and b is the number of pairs with different clusters.

4.3 Performance Comparison

In this section, we conduct comparison experiments of IDCRN
and the other 14 baselines to show the superiority of IDCRN.
Specifically, K-means algorithm [29] is a classic clustering method
with the idea of EM algorithm [53]. Besides, three generative deep
clustering methods, including AE [19], DEC [30]], and IDEC [31]],
first train an auto encoder to embed the samples into the latent
space and then perform K-means [29]] over the learned embed-
dings. Different from them, three typical GCN-based frameworks,
i.e., GAE / VGAE [14], DAEGC [2], and ARGA / ARVGA [3]
aim to learn representations for clustering by exploiting from both
the structure and attribute of the graph. More recently, four state-
of-the-art deep graph clustering methods, i.e., SDCN / SDCNg
[9], DFCN [11], MVGRL [[15]], and MCGC [20] have achieved the
promising clustering performance through learning the consensus
representations from different views of the graph.

Table[3|reports the clustering performance of IDCRN and other
14 compared baselines on six benchmarks. Based on these results,
we analyze and conclude as follows.

e Our proposed IDCRN almost exceeds all other baselines
in four metrics on six datasets except the NMI metric on
PUBMED dataset.

« Specifically, our proposed method achieves better clustering
performance than the strongest deep graph clustering frame-
works, including SDCN/SDCNg [9], MVGRL [15], MCGC
[20], and DFCN [11]. For instance, IDCRN exceeds DFCN
by 6.08% 9.00%, 11.81% 5.77% increment concerning ACC,
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NMI, ARI, and F1 metrics on DBLP dataset. The reason is
that they all aim to learn latent embeddings from multi-view
graph data with redundant information, thus easily suffer-
ing from representation collapse. Different from them, by
reducing the redundancy and recovering the affinity matrix,
IDCRN is guided to learn more discriminative representation,
thus avoiding the collapsed representation.

e Other GCN-based graph clustering methods, including
ARGA [3], DAEGC [2]], and GAE/VGAE [14] achieve unsat-
isfactory performance compared to ours since these methods
fail to exploit different views of the graph.

o The auto-encoder-based clustering methods, including AE
[19], DEC [19], and IDEC [31]], achieve unpromising clus-
tering performance. This verifies that these methods, which
are merely based on attribute of the samples, can not learn
discriminative features from the graph data.

e The classical clustering method K-means algorithm [29]
achieve unpromising results since it is directly performed on
the raw attributes.

Overall, the above observations and conclusions have verified that
our proposed method effectively alleviates representation collapse
and achieves superior clustering performance.

4.4 Ablation Studies

In this section, we conduct ablation studies to verify the effective-
ness of our proposed IDCRM and further two proposed strategies
including Affinity Recovery Strategy (ARS) and Redundancy
Reduction Strategy (RRS) in IDCRM.

4.4.1 Effectiveness of Improved Dual Correlation Reduc-
tion Module

In order to verify the effectiveness of Improved Dual Correlation
Reduction Module (IDCRM) clearly, extensive ablation studies
are conducted in Table El} Here, we adopt DFCN [11] as the
baseline. Besides, the baseline with the propagated regularization
(P-reg) [17]], the IDCRM, and both of them is denoted as B-P, B-I,
and, B-P-I, respectively. From these results, we could observe and
conclude as follows.

e To B-P, P-reg could improve the baseline by about 0.79%
on DBLP dataset. From these results, we conclude that P-reg
could some extent alleviate the over-smoothing problem and
improve our model’s generalization capacity.

e Our proposed IDCRM improves the baseline by a large
margin. For instance, the baseline with IDCRM, i.e., B-
I, exceeds the baseline by 6.04%, 9.02%, 11.74%, 5.70%
performance increment in terms of ACC, NMI, ARI, and F1
on DBLP dataset. Based on these results, we analyze and
conclude that the discriminative capacity of the latent features
is enhanced by our proposed IDCRM, thus improving the
clustering performance.

o Compared to other variants, B-P-I achieves the best results,
verifying the effectiveness of the both components, i.e.,
IDCRM and P-reg.

4.4.2 Effectiveness of ARS and RRS

Furthermore, we carry on the ablation studies of the two proposed
strategy including Affinity Recovery Strategy (ARS) and Redun-
dancy Reduction Strategy (RRS). Here, we adopt DFCN [[11]] as
our baseline. Then we denote B-R, B-A and, B-R-A as the baseline
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Dataset Metric K-Means AE DEC IDEC GAE VGAE DAEGC ARGA ARVGA SDCN, SDCN MVGRL MCGC DFCN DCRN IDCRN

129 119 130 131 |14 114, 2 13 13 19 19! 115 120 |11 Our Proposed Methods

ACC | 38.65%0.65 51.43x0.35 58.1620.56 60.31£0.62 6121122 5859£0.06 62.05£0.48 64.83+0.59 54.41£0.42 65.74£1.34 68.05£1.81 42.73£1.02 58.92+0.05 76.00£0.80 | 79.66+0.25 82.08+0.18

DBLP NMI | 11.45+0.38 25.40+£0.16 29.51x0.28 31.174#0.50 30.80+0.91 26.92+0.06 32.49+0.45 29.42+0.92 25.90+0.33 35.11x1.05 39.50+1.34 15.4120.63 33.69£0.06 43.70£1.00 | 48.95+0.44 52.70+0.36

ARI | 6.97+0.39 12.21+0.43 23924039 2537+0.60 22.02+1.40 17.92+0.07 21.03x0.52 27.99+0.91 19.81£0.42 34.00£1.76 39.154£2.01 8.22+0.50 25.97+0.21 47.00£1.50 | 53.60£0.46 58.81+0.37

Fl 31.9240.27 52.53+0.36  59.38+0.51 61.33+0.56 61.41+2.23 58.69+0.07 61.75+0.67 64.97+0.66 55.37+0.40 65.78+1.22 67.71£1.51 40.52+1.51 50.39+0.09 75.70+0.80 | 79.28+0.26 81.47+0.20

ACC |39.32#3.17 57.08+0.13 55.89+0.20 60.49+1.42 61.35£0.80 60.974#0.36 64.54+x1.39 61.07+0.49 59.31£1.38 61.67+1.05 65.96£0.31 68.66£0.36 64.76x+0.07 69.50£0.20 | 70.86+0.18 71.40+0.08

CITE NMI | 16944322 27.64+£0.08 28.34x0.30 27.174#2.40 34.63+0.65 32.69+0.27 36.41£0.86 34.40+0.71 31.80£0.81 34.39+1.22 38.71x0.32 43.6620.40 39.11£0.06 43.90+0.20 | 45.86+0.35 46.77+0.21

ARI 13.434£3.02 29.31+0.14 28.12+0.36 25.70£2.65 33.55+1.18 33.13+0.53 37.78+1.24 34.32+0.70 31.28+1.22 35.50+1.49 40.17+0.43 44.27+0.73 37.54£0.12 45.50+0.30 | 47.64+0.30 48.67+0.20

Fl1 36.0843.53 53.80+0.11 52.62+0.17 61.62+1.39 57.36+0.82 57.70£0.49 62.20+1.32 58.23+0.31 56.05+1.13 57.82+0.98 63.62+0.24 63.7120.39 59.64+0.05 64.30+0.20 | 65.83+0.21 66.27+0.21

ACC | 67.31x0.71 81.83+0.08 84.33x0.76 85.12+0.52 84.52+1.44 84.13£0.22 86.94+2.83 86.29+0.36 83.89+0.54 86.95+0.08 90.45+0.18 86.730.76 91.64+0.00 90.90£0.20 | 91.93+0.20 92.58+0.08

ACM NMI | 32442046 49.30£0.16 54.54£1.51 56.61£1.16 55.38+1.92 53.20£0.52 56.18+4.15 56.21+0.82 51.88+£1.04 58.90+0.17 68.3120.25 60.87+1.40 70.71£0.00 69.40+£0.40 | 71.56+0.61 73.17+0.32

ARI | 30.60+0.69 54.64+0.16 60.64+1.87 62.16+1.50 59.46+3.10 57.72+0.67 59.35+3.89 63.37+0.86 57.77+1.17 65.25+0.19 73.91£0.40 65.07+1.76 76.63+0.00 74.90+0.40 | 77.56+0.52 79.18+0.22

Fl1 67.57+0.74 82.01+0.08 84.51+0.74 85.11+0.48 84.65+1.33 84.17+0.23 87.07+2.79 86.31+0.35 83.87+0.55 86.84+0.09 90.42+0.19 86.85+0.72 91.70+0.00 90.80+0.20 | 91.94+0.20 92.60+0.08

ACC [27.22#0.76 48.25+0.08 47.22+0.08 47.62+0.08 71.57+2.48 74.26£3.63 76.44x0.01 69.28+2.30 61.46£2.71 35.53£0.39 53.44x£0.81 45.19+1.79 71.64+0.00 76.88+0.80 | 79.94+0.13 80.17+0.04

AMAP NMI | 13.23£1.33 38.76+0.30 37.35+0.05 37.83+0.08 62.13£2.79 66.01+3.40 65.57+0.03 58.36+2.76 53.25£1.91 27.90+0.40 44.85+0.83 36.89+1.31 61.54+0.00 69.21£1.00 | 73.70+0.24 74.32+0.07

ARI 5.50£0.44  20.80+0.47 18.59+0.04 19.24+0.07 48.8244.57 56.24+4.66 59.39+0.02 44.18+4.41 38.44+4.69 15.27+0.37 31.21£1.23 18.79+£0.47 43.2320.00 58.98+0.84 | 63.69+0.20 64.10£0.10

F1 23.9620.51 47.87+0.20 46.71x0.12 47.20£0.11 68.08+1.76 70.38+2.98 69.97+0.02 64.30£1.95 58.5£1.70 34.25+0.44 50.66+1.49 39.65+2.39 68.64+0.00 71.58+0.31 | 73.82+0.12 74.01x0.04

ACC [59.83+0.01 63.07+0.31 60.1420.09 60.70£0.34 62.09£0.81 68.48+0.77 68.73+0.03 65.26x0.12 64.25+1.24 64.39£0.30 6420£1.30 67.01x0.52 60.97+0.01 68.89+0.07 | 69.87+0.07 70.02+0.03

PUBMED NMI | 31.05£0.02 26.32+0.57 22.44+0.14 23.67+0.29 23.84+3.54 30.61x1.71 28.26+0.03 24.80+0.17 23.88£1.05 26.67+1.31 22.87+2.04 31.59+1.45 33.39+0.02 31.43+0.13 | 32.20+0.08 33.29+0.07

ARI | 51.43£0.35 23.86+0.67 19.554£0.13 20.58+0.39 20.62+1.39 30.15+1.23 29.84+0.04 24.35+0.17 22.82+1.52 24.61£1.46 22.30£2.07 29.42+1.06 29.25+0.01 30.64x0.11 | 31.41£0.12 32.67+0.05

F1 58.88+0.01 64.01+0.29 61.49+0.10 62.41+£0.32 61.37+0.85 67.68+0.89 68.23+0.02 65.69+0.13 64.51+1.32 65.46+0.39 65.01x1.21 67.07+0.36 59.84+0.01 68.10+0.07 | 68.94+0.08 69.19+0.03

ACC [2627+1.10 33.12+0.19 31.92+0.45 32.19+0.31 29.60+0.81 32.66+1.29 34.35£1.00 22.07+0.43 29.57+0.59 29.75+0.69 26.67+0.40 31.52+2.95 29.08+0.58 37.51+0.81 | 38.80+£0.60 39.45+0.50

CORAFULL NMI | 34.68+0.84 41.53+0.25 41.67+0.24 41.64+0.28 45.82+0.75 47.38+1.59 49.16+0.73 41.28+0.25 48.77+0.44 40.10+0.22 37.38+0.39 48.99+3.95 36.86+0.56 51.30+0.41 | 51.91+0.35 52.83+0.39

ARI 9.35£0.57 18.13+0.27 16.98+0.29 17.17£0.22 17.84+£0.86 20.01+1.38 22.60+0.47 12.38+0.24 18.80+£0.57 16.47+0.38 13.630.27 19.11+2.63 13.15£0.48 24.46+0.48 | 25.25+0.49 25.97+0.54

Fl 22.57+1.09 2844030 27.7120.58 27.72+#0.41 25.95+0.75 29.06£1.15 26.96+1.33 18.85+0.41 2543+0.62 24.62+0.53 22.14+0.43 26.51+2.87 22.90+0.52 31.22+0.87 | 31.68+0.76 32.58+0.72

Table 3: The clustering performance of 14 state-of-the-art algorithms and our proposed method with mean values + standard deviations
(mean = std) on six datasets.The values with red and blue correspond to the best and the runner-up results.

(a) Raw Data

(b) AE

(c) DEC

(d) GAE

(e) ARGA (f) DFCN

(2) IDCRN

Figure 4: t-SNE [52] visualization of the representation of raw data, AE [19], DEC [30], GAE [14], ARGA [3|], DFCN [11], and our
proposed method on two datasets. The first and second row indicate the results on ACM and DBLP dataset, respectively.

Dataset Metric B B-P B-1 B-P-1
ACC | 76002080 77.00£041 82042022  82.08%0.18
DELP NMI | 4370£1.00 44.9840.56 52.72:042 5270036
ART | 47006150 48512084 5874+042 58.812037
FI | 75706080 76774038 81.40£024 81474020
ACC [ 60502020 70.072021 71122014 71.4020.08
CITE NMI | 4390020 44758040 46302035  46.77£0.21
ART | 45506030 4652036 48.20:032  48.67+0.20
FI | 64304020 65034023 66.23:022 66274021
ACC [ 90002020 91.5720.12  92.3020.19 92.58%0.08
ACM NMI | 6940040 70.82025 7232£0.53 73.174032
ART | 74905040 76.68£0.28 78.46:049  79.18+022
FI | 90804020 O1.53%0.12 92312020  92.60+0.08
ACC | 76.8320.80 79.0120.01 80023024  80.1720.04
AMAP NMI | 69214100 72294001 73812021  74.32£0.07
ART | 58085084 62.10£0.01 63.95:039  64.10£0.10
FI | 71584031 73.0940.00 73.92£020 74.01£0.04
ACC | 68.8920.07 69.4320.05 69.8020.06 70.0220.03
NMI | 314320.13 31.98£0.12  32.05:0.06  33.29£0.07
PUBMED | \pr | 30.6420.11 31354012 313420.11 32.67£0.05
FI | 68104007 68544006 68.83£0.07 69.19+0.03
ACC [ 37512081 37.042071 38453027 39.4520.50
NMI | 51306041 51.90£0.26 51.04£023  52.830.39
CORAFULL | \pr | 24465048 24.13£0.51 2496020  25.97+0.54
FI | 31224087 3035+087 31.87£075 32.5840.72

Table 4: Ablation study results
regularization on six benchmarks.

of IDCRM and the propagated

with RRS, ARS, and both, respectively. By observing the results
in Fig. 5] we have three following three conclusions.

o B-R achieves better clustering performance than the baseline
on four of six datasets since the learned embeddings is not
robust without revealing the underlying sample distribution.

o The baseline with ARS significantly outperforms the baseline
on six datasets. Take the results on DBLP dataset for an
instance, B-A obtains 5.63% accuracy improvement. Ben-
efited from our proposed ARS, the network is guided to
reveal the underlying sample distribution, thus enhancing the
discriminative capability of the learned features.

e Moreover, B-R-A achieves the best clustering performance,
further indicating that our proposed RRS and ARS effectively
improve the discriminative capability of the learned embed-
dings.

4.5 Sensitivity Analysis of Hyper-parameters

We conduct extensive experiments to analyze the robustness of
our proposed method IDCRN to the hyper-parameters.

4.5.1 Sensitivity Analysis of Graph Augmentation Module

In order to investigate the influence of graph augmentation mod-
ule, we first conduct an experiment about the teleport probability
« in the graph diffusion, i.e., Personalized PageRank (PPR) [38]],
on DBLP, CITE, ACM, and AMAP datasets. In Fig. [6| we could
observe that the accuracy firstly raises and reaches the high peak
value where the teleport probability « is around 0.2 while the
clustering performance decreases down with the larger teleport
probability «. Besides, our proposed method is robust to the
teleport probability & when o € (0.2,0.8).

In addition, we also explore the influence of the hyper-
parameter € in K-nearest neighbors algorithm (KNN) [36] during
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Figure 5: The ablation study results of the proposed two strategies,
i.e., Affinity Recovery Strategy (ARS) and Redundancy Reduction
Strategy (RRS).
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Figure 6: Sensitivity Analysis of the teleport probability « in the
graph diffusion on DBLP, CITE, ACM, and AMAP datasets.
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the process of the KNN graph adjacency matrix generation. From
Fig. [, we observe and conclude the ACC metric of clustering
does not fluctuate significantly with the variation of € so that our
proposed IDCRN is insensitive to the nearest neighbor number e.
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Figure 7: Sensitivity Analysis of the nearest neighbor number € in
the KNN adjacency matrix generation on DBLP, CITE, ACM and
AMAP datasets.
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Figure 8: Sensitivity Analysis of hyper-parameter K. The results
on DBLP, CITE, ACM (sub-figure a) and AMAP, PUBMED,
CORAFULL (sub-figure b) datasets are illustrated.

4.5.2 Sensitivity Analysis of Hyper-parameter K

The sensitivity of hyper-parameter K in IDCRN is explored. Fig.
shows that the accuracy of IDCRN firstly increases to the high
peek value and then stays at it with the slight perturbation as K

increases. Besides, our proposed method is robust to the variation
of K.

4.6 GPU Memory Costs and Time Costs

GPU memory and time costs are two important indicators for
the algorithm evaluation. Compared to other contrastive-learning-
base methods, IDCRN could save GPU memory costs since it
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eliminates the space-consuming negative sample generation. In
order to certify this advantage of IDCRN, we conduct experiments
of GPU memory costs and report the average results on the ACM,
CITE, and DBLP datasets in Fig. |§| (a). From the results, we
observe that IDCRN saves about 53.55 % GPU memory against
MVGRL [15] on average. Furthermore, we also test the algorithm
running time of the baselines and IDCRN in Fig. |g| (b) on ACM
dataset. From these results, we observe that our method has
comparable time costs compared to other baselines. The running
time of our proposed method could be optimized in the future.
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(a) GPU memory costs (b) Time costs
Figure 9: GPU memory (sub-figure a) and time cost (sub-figure b)
comparison between our method and the state-of-the-art methods.

4.7 Visualization Experiments

To intuitively show the superiority of IDCRN, two visualization
experiments are conducted in this section.

4.7.1 Visualization of Node Similarity Matrices

We plot the heat maps of sample similarity matrices in the learned
space to intuitively show the representation collapse problem in
deep clustering methods and the effectiveness of our solution to
this issue. The red, blue, and white colors indicate positive corre-
lation, negative correlation, and decorrelation, respectively. Here,
we sort all samples by categories to make those from the same
cluster beside each other. As illustrated in Fig.[I0} we observe that
GAE [14] and MVGRL [15] would suffer from representation
collapse during the process of node encoding. Unlike them, our
proposed method learns the more discriminative latent features,
thus avoiding the representation collapse.

4.7.2 t-SNE Visualization of the Learned Embeddings

In addition, we utilize t-SNE algorithm [52]] to visualize the
node embeddings Z learned by AE [19], DEC [30], GAE [14],
ARGA [3], DFCN [11]] and our proposed IDCRN. The t-SNE
algorithm is a non-linear dimensionality reduction algorithm based
on t-distribution. From the results as illustrated in Fig. ] we
observe that IDCRN learns a clearer structure of distribution in the
latent space, thus better revealing the intrinsic clustering structure
among the graph data. Besides, we further show the process of
training our proposed method on DBLP, CITE, ACM, and AMAP
datasets by performing t-SNE algorithm [52]] over the learned
node embeddings Z per 80 training epochs. From these results
in Fig. @ we observe that the distribute structure of learned node
embeddings becomes clearer when the number of training epoch
increases.
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(a) GAE

(b) MVGRL

(c)SDCN

(d) IDCRN

Figure 10: Visualization of sample similarity matrices in the latent
space learned by our proposed method (IDCRN), SDCN [9],
MVGRL [15]], and GAE [|14] on two benchmarks. The first row
and second row correspond to the results on ACM and CITE
datasets, respectively.

5 CONCLUSION

In this paper, to solve the representation collapse problem, we
propose a novel deep graph clustering method termed Improved
Dual Correlation Reduction Network (IDCRN) by improving the
discriminative capability of node embeddings in the sample and
feature aspects. Specifically, to the feature aspect, we reduce the
redundancy between different dimensions of the learned features
by approximating the cross-view feature correlation matrix to an
identity matrix, thus improving the discriminative capability of the
learned space explicitly. Simultaneously, in the sample aspect, we
force the cross-view sample correlation matrix to approximate the
designed clustering-refined adjacency matrix. With this setting,
we guide the learned latent representation to recover the affinity
matrix even across views, thus improving the feature discrim-
inative capability implicitly. Extensive experimental results on
six benchmarks demonstrate the effectiveness and efficiency of
IDCRN. In the future, it is worth trying to apply IDCRN to
more challenging applications, such as incomplete deep graph
clustering.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of
China (project no. 2020AAA0107100) and the National Natural
Science Foundation of China (project no. 62006237, 61922088,
61906020 and 61773392).

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[2] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed
graph clustering: A deep attentional embedding approach,” arXiv preprint
arXiv:1906.06532, 2019.

[3] S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning
graph embedding with adversarial training methods,” IEEE transactions
on cybernetics, vol. 50, no. 6, pp. 2475-2487, 2019.

[4] Z. Tao, H. Liu, J. Li, Z. Wang, and Y. Fu, “Adversarial graph embedding
for ensemble clustering,” in International Joint Conferences on Artificial
Intelligence Organization, 2019.

[5] B.Hui, P. Zhu, and Q. Hu, “Collaborative graph convolutional networks:
Unsupervised learning meets semi-supervised learning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 4215-4222.

[6] J. Park, M. Lee, H. J. Chang, K. Lee, and J. Y. Choi, “Symmetric
graph convolutional autoencoder for unsupervised graph representation
learning,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 6519-6528.

Page 10 of 22



Page 11 of 22
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

oNOYTULT D WN =

*****For Peer Review Only*****

11

(a) Raw Data

(b) 0 Epoch

(c) 80 Epoch

(d) 160 Epoch

g

N

o

(e) 240 Epoch (f) 320 Epoch (g) 400 Epoch

Figure 11: {-SNE visualization of the raw data and the training process of our proposed method, including O (initialization), 80,
160, 240, 320, 400 epochs. In this figure, the first to the fourth row are the results on the DBLP, CITE, ACM, and AMAP datasets,
respectively.

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

(20]

[21]

G. Cui, J. Zhou, C. Yang, and Z. Liu, “Adaptive graph encoder for
attributed graph embedding,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020,
pp. 976-985.

S. Fan, X. Wang, C. Shi, E. Lu, K. Lin, and B. Wang, “One2multi graph
autoencoder for multi-view graph clustering,” in Proceedings of The Web
Conference 2020, 2020, pp. 3070-3076.

D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep
clustering network,” in Proceedings of The Web Conference 2020, 2020,
pp. 1400-1410.

Z. Peng, H. Liu, Y. Jia, and J. Hou, “Attention-driven graph clustering
network,” in Proceedings of the 29th ACM International Conference on
Multimedia, 2021, pp. 935-943.

W. Tu, S. Zhou, X. Liu, X. Guo, Z. Cai, E. Zhu, and J. Cheng, “Deep
fusion clustering network,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 11, 2021, pp. 9978-9987.

Z. Peng, H. Liu, Y. Jia, and J. Hou, “Deep attention-guided graph
clustering with dual self-supervision,” arXiv preprint arXiv:2111.05548,
2021.

N. Mrabah, M. Bouguessa, M. F. Touati, and R. Ksantini, “Rethink-
ing graph auto-encoder models for attributed graph clustering,” arXiv
preprint arXiv:2107.08562, 2021.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

K. Hassani and A. H. Khasahmadi, “Contrastive multi-view represen-
tation learning on graphs,” in International Conference on Machine
Learning. PMLR, 2020, pp. 4116-4126.

Y. Tian, X. Chen, and S. Ganguli, “Understanding self-supervised learn-
ing dynamics without contrastive pairs,” in International Conference on
Machine Learning. PMLR, 2021, pp. 10268-10278.

H. Yang, K. Ma, and J. Cheng, “Rethinking graph regularization for
graph neural networks,” arXiv preprint arXiv:2009.02027, 2020.

Y. Liu, W. Tu, S. Zhou, X. Liu, L. Song, X. Yang, and E. Zhu, “Deep
graph clustering via dual correlation reduction,” in AAAI Conference on
Artificial Intelligence, 2022.

B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-
friendly spaces: Simultaneous deep learning and clustering,” in interna-
tional conference on machine learning. PMLR, 2017, pp. 3861-3870.
E. Pan and Z. Kang, “Multi-view contrastive graph clustering,” Advances
in Neural Information Processing Systems, vol. 34, 2021.

X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” IEEE Transactions
on Knowledge and Data Engineering, 2021.

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]
[35]

[36]

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9729-9738.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597-1607.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar et al.,
“Bootstrap your own latent: A new approach to self-supervised learning,”
arXiv preprint arXiv:2006.07733, 2020.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” arXiv preprint arXiv:2006.09882, 2020.

X. Chen and K. He, “Exploring simple siamese representation learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 15750-15758.

J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins:
Self-supervised learning via redundancy reduction,” arXiv preprint
arXiv:2103.03230, 2021.

A. Bardes, J. Ponce, and Y. Lecun, “Vicreg: Variance-invariance-
covariance regularization for self-supervised learning,” in /CLR 2022-
10th International Conference on Learning Representations, 2022.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the royal statistical society. series ¢ (applied
statistics), vol. 28, no. 1, pp. 100-108, 1979.

J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International conference on machine learning.
PMLR, 2016, pp. 478-487.

X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering
with local structure preservation.” in [jcai, 2017, pp. 1753-1759.

Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in Neural Information
Processing Systems, vol. 33, pp. 5812-5823, 2020.

Y. Zhu, Y. Xu, FE. Yu, Q. Liu, S. Wu, and L. Wang, “Graph contrastive
learning with adaptive augmentation,” in Proceedings of the Web Confer-
ence 2021, 2021, pp. 2069-2080.

R. A. Horn, “The hadamard product,” in Proc. Symp. Appl. Math, vol. 40,
1990, pp. 87-169.

W. Tu, S. Zhou, Y. Liu, and X. Liu, “Siamese attribute-missing graph
auto-encoder,” arXiv preprint arXiv:2112.04842, 2021.

O. Kramer, “K-nearest neighbors,” in Dimensionality reduction with
unsupervised nearest neighbors. ~Springer, 2013, pp. 13-23.



oNOYTULT D WN =

*****For Peer Review Only*****

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

[37] 1. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.
[38] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999. ==
[39] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: =4
Homophily in social networks,” Annual review of sociology, vol. 27, M
no. 1, pp. 415-444, 2001.
[40] B. Fuglede and F. Topsoe, “Jensen-shannon divergence and hilbert space
embedding,” in International Symposium onlnformation Theory, 2004.
ISIT 2004. Proceedings. IEEE, 2004, p. 31. 2
[41] S. Kullback and R. A. Leibler, “On information and sufficiency,” The

Page 12 of 22

12

Xinwang Liu received his PhD degree from Na-
tional University of Defense Technology (NUDT),
China. He is now Professor of School of Com-
puter, NUDT. His current research interests in-
clude kernel learning and unsupervised fea-
ture learning. Dr. Liu has published 60+ peer-
reviewed papers, including those in highly re-
garded journals and conferences such as IEEE
T-PAMI, IEEE T-KDE, IEEE T-IP, IEEE T-NNLS,
IEEE T-MM, |IEEE T-IFS, ICML, NeurlPS, ICCV,
CVPR, AAAI, IJCAI, etc. He serves as the as-

annals of mathematical statistics, vol. 22, no. 1, pp. 79-86, 1951. sociated editor of Information Fusion Journal. More information can be
[42] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based  found at https://xinwangliu.github.io/.

recommendations on styles and substitutes,” in Proceedings of the 38th
international ACM SIGIR conference on research and development in
information retrieval, 2015, pp. 43-52.

[43] G. Namata, B. London, L. Getoor, B. Huang, and U. EDU, “Query-driven
active surveying for collective classification,” 2012.

[44] A. Bojchevski and S. Giinnemann, “Deep gaussian embedding of graphs:
Unsupervised inductive learning via ranking,” in International Confer-
ence on Learning Representations, 2018, pp. 1-13.

[45] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[46] S.Liu, S. Wang, P. Zhang, X. Liu, K. Xu, C. Zhang, and F. Gao, “Efficient ==
one-pass multi-view subspace clustering with consensus anchors,” in 5
AAAI Conference on Artificial Intelligence, 2022. b

[47] S. Zhou, X. Liu, M. Li, E. Zhu, L. Liu, C. Zhang, and J. Yin, “Multiple >
kernel clustering with neighbor-kernel subspace segmentation,” /EEE - ‘é f

transactions on neural networks and learning systems, vol. 31, no. 4,
pp. 1351-1362, 2019.

[48] S. Zhou, E. Zhu, X. Liu, T. Zheng, Q. Liu, J. Xia, and J. Yin, “Subspace
segmentation-based robust multiple kernel clustering,” Information Fu-
sion, vol. 53, pp. 145-154, 2020.

[49] T. Zhang, X. Liu, L. Gong, S. Wang, X. Niu, and L. Shen, “Late fusion
multiple kernel clustering with local kernel alignment maximization,”
IEEE Transactions on Multimedia, pp. 1-1, 2021.

[50] S. Wang, X. Liu, E. Zhu, C. Tang, J. Liu, J. Hu, J. Xia, and J. Yin, “Multi-
view clustering via late fusion alignment maximization.” in IJCAI, 2019,
pp. 3778-3784.

[51] M. D. Plummer and L. Lovasz, Matching theory. Elsevier, 1986.

[52] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[53] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions.
John Wiley & Sons, 2007, vol. 382.

Yue Liu graduated from Northeastern University
at Qinhuangdao, Hebei, China. He was recom-
mended for admission to the National University

f ) of Defense Technology (NUDT) with excellent
grades and technological innovation capability.
He is working hard and pursuing his master de-
gree in College of Computer, NUDT, China. His
current research interests include graph neural
networks, deep clustering and self-supervised
learning.

Wenxuan Tu is pursuing his Ph.D. degree in
College of Computer, National University of De-
fense Technology (NUDT), China. His research
interests include unsupervised graph learning,
deep graph clustering, and image semantic seg-
mentation. He has published several papers in
highly regarded journals and conferences such
as AAAI, ICML, MM, IEEE T-IP, Information Sci-
ences, etc.

Xihong Yang is recommended for admission to
the National University of Defense Technology
(NUDT) as a master’s student with excellent
grades and competition awards. He is working
hard to pursue his master degree. His current re-
search interests include semi-supervised learn-
ing, self-supervised learning and graph neural
networks.

Xin Xu received the B.S. degree in electrical
engineering from the Department of Automatic
Control, National University of Defense Technol-
ogy (NUDT), Changsha, P. R. China, in 1996
and the Ph.D. degree in control science and
engineering from the College of Mechatronics
and Automation (CMA), NUDT. He has been a
visiting scientist for cooperation research in the
Hong Kong Polytechnic University, University of
Alberta, and the University of Strathclyde, re-
spectively. Currently, he is a full professor with

the College of Intelligence Science and Technology and Director of

the Department of Artificial Intelligence, National University of Defense

Technology, Changsha, P.R. China. Prof. Xu’'s main research fields in-

. ) ) clude machine learning and autonomous control of robots and intelligent
Sihang Zhou received his PhD degree from  nmanned systems. He received the Distinguished Young Scholars’

fense Technology (NUDT), China. He is now  (ecipients of the second-class National Natural Science Award of China

School of Computer, National University of De-  Fynds of National Natural Science Foundation of China. He is one of the
-
» s

lecturer at College of Intelligence Science and  gnqd 2 first-class Natural Science Awards of Hunan Province, China.

& Technology, NUDT. His current research inter-  Hg has published 2 monographs and more than 200 papers. He is a
N ests include machine learning and medical im-  genior member of IEEE and an associate editor of IEEE Transactions

age analysis. Dr. Zhou has published 40+ peer-  on System, Man and Cybernetics: Systems, Information Sciences, Inter-
reviewed papers, including IEEE T-IP, IEEE T- national Journal of Robotics and Automation, associate Editor-in-Chief
NNLS, IEEE T-MI, Information Fusion, Medical o GAAI transactions on Intelligence Technology, and an Editorial Board
Image Analysis, AAAI, MICCAI, etc. Member of the Journal of Control Theory and Applications.


https://xinwangliu.github.io/

Page 13 of 22 **x¢%Eor Peer Review Only****
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Fuchun Sun is a full professor of department

of computer science and technology, Tsinghua
—~ University, IEEE/CAAI/CAA Fellow. He serves as
Vice Chairman of Chinese Association for Artifi-
cial Intelligence and Executive Director of Chi-
nese Association for Automation. His research
interests include robotic perception and skill
learning, cross-modal learning and robot dexter-
ous operations. Dr. Sun is the recipient of the
excellent Doctoral Dissertation Prize of China in
2000 by MOE of China and the Choon-Gang
9 Academic Award by Korea in 2003, and was recognized as a Distin-
10 guished Young Scholar in 2006 by the Natural Science Foundation of
China. He served as the EIC of the Journal of Cognitive Computation
and Systems, and associated editors of IEEE Trans. on Neural Net-
12 works and Learning Systems during 2006-2010, IEEE Trans. On Fuzzy
13 Systems since 2011, IEEE Trans. on Cognitive and Development Sys-
tems since 2018 and IEEE Trans. on Systems, Man and Cybernetics:
Systems since 2015.

oNOYTULT D WN =



oNOYTULT D WN =

*****For Peer Review Only*****

Deep Graph Clustering via Dual Correlation Reduction

Yue Liu,'* Wenxuan Tu,'* Sihang Zhou,” Xinwang Liu,'"
Linxuan Song,' Xihong Yang,! En Zhu!

!College of Computer, National University of Defense Technology, Changsha, China
2College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
{yueliu, twx, xinwangliu, yangxihong, enzhu} @nudt.edu.cn, sihangjoe @ gmail.com, slxnatavidad@ 163.com

Abstract

Deep graph clustering, which aims to reveal the underlying
graph structure and divide the nodes into different groups,
has attracted intensive attention in recent years. However, we
observe that, in the process of node encoding, existing meth-
ods suffer from representation collapse which tends to map
all data into the same representation. Consequently, the dis-
criminative capability of the node representation is limited,
leading to unsatisfied clustering performance. To address this
issue, we propose a novel self-supervised deep graph clus-
tering method termed Dual Correlation Reduction Network
(DCRN) by reducing information correlation in a dual man-
ner. Specifically, in our method, we first design a siamese
network to encode samples. Then by forcing the cross-view
sample correlation matrix and cross-view feature correlation
matrix to approximate two identity matrices, respectively, we
reduce the information correlation in the dual-level, thus im-
proving the discriminative capability of the resulting features.
Moreover, in order to alleviate representation collapse caused
by over-smoothing in GCN, we introduce a propagation reg-
ularization term to enable the network to gain long-distance
information with the shallow network structure. Extensive
experimental results on six benchmark datasets demonstrate
the effectiveness of the proposed DCRN against the existing
state-of-the-art methods. The code of DCRN is available at
DCRN and a collection of deep graph clustering is shared at
Awesome Deep Graph Clustering|on Github.

Introduction

Deep graph clustering is a fundamental yet challenging task
whose target is to train a neural network for learning rep-
resentations to divide nodes into different groups without
human annotations. Thanks to the powerful graph informa-
tion exploitation capability, graph convolutional networks
(GCN) (Kipf and Welling|2016a)) have recently achieved
promising performance in many graph clustering applica-
tions like social networks and recommendation systems.
Consequently, it has attracted considerable attention in this
field and many algorithms are proposed (Wang et al.[|2019;
Pan et al.|2019; [Tao et al.[2019; |Park et al.[[2019; Bo et al.
2020; Tu et al.|[2020).

“First author with equal contribution

Corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: The heat maps of node similarity matrices in the
latent space of GAE (Kipf and Welling/2016b), MVGRL
(Hassani and Khasahmadi|2020), and our proposed method
on the ACM dataset.

Though good performance has been achieved, we found
that the existing GCN-based clustering algorithms usually
suffer from the representation collapse problem and tend to
map nodes from different categories into the similar repre-
sentation in the process of sample encoding. As a result,
the node representation is indiscriminative and the cluster-
ing performance is limited. We illustrate this phenomenon
on ACM dataset in Fig. [T] In this figure, we first extract
the node embedding learned from three representative al-
gorithms, i.e., the Graph Auto-Encoder (GAE) (Kipf and
Welling|2016b)), Multi-View Graph Representation Learning
(MVGRL) (Hassani and Khasahmadi|[2020)), and our pro-
posed algorithm (OURS), and then construct the element-
wise similarity matrices by calculating the cosine similarity,
respectively. Finally, we visualize the similarity matrices of
the three compared algorithms in Fig. [l Among the com-
pared algorithms, GAE is a classic graph convolutional net-
work, MVGRL is a contrastive strategy enhanced algorithm,
which can to some extent alleviate the representation col-
lapse problem by introducing a positive and negative sample
pair recognition mechanism. From sub-figure (a) and (b), we
observe that, in the latent space learned by both the classic
algorithm and the contrastive learning enhanced algorithm,
the intrinsic three dimensional cluster space is not well re-
vealed. It indicates that representation collapse is still an
open problem which is restricting the performance of GCN-
based clustering algorithms.

To solve this problem, we propose a novel self-supervised
deep graph clustering method termed Dual Correlation Re-
duction Network (DCRN) to avoid representation collapse
by reducing the information correlation in a dual manner.
To be specific, in our network, a dual information correla-
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tion reduction mechanism is introduced to force the cross-
view sample correlation matrix and cross-view feature cor-
relation matrix to approximate two identity matrices, respec-
tively. In this setting, by forcing the cross-view sample-level
correlation matrix to approximate an identical matrix, we
guide the same noise-disturbed samples to have the identi-
cal representation while different samples to have the differ-
ent representation. In this way, the sample representations
would be more discriminative and in the meantime more
robust against noisy information. Similarly, by letting the
cross-view feature-level correlation matrix to approximate
an identical matrix, the discriminative capability of latent
feature is enhanced since different dimensions of the latent
feature are decorrelated. This could be clearly seen in Fig.
[T] (c) since the similarity matrix generated by our proposed
method can obviously exploit the hidden cluster structure
among data better than the compared algorithms. As a self-
supervised method, since our algorithm gets rid of the com-
plex and space-consuming negative sample construction op-
erations, it is more space-saving than the other contrastive
learning-based algorithms. For example, in the process of
model training with all samples on DBLP, CITE and ACM
datasets, MVGRL spends 5753M GPU memory on aver-
age while our proposed method only spends 2672M on av-
erage. Moreover, motivated by propagation regularization
(Yang, Ma, and Cheng|2020), in order to alleviate represen-
tation collapse caused by over-smoothing in GCN (Kipf and
Welling|2016a)), we improve the long-distance information
capture capability of our model with shallow network struc-
ture by introducing a propagation regularization term. This
further improves the clustering performance of our proposed
algorithm. The key contributions of this paper are listed as
follows.

* We propose a siamese network-based algorithm to solve
the problem of representation collapse in the field of deep
graph clustering.

* A dual correlation reduction strategy is proposed to im-
prove the discriminative capability of the sample rep-
resentation. Thanks to this strategy, our method is free
from the complicated negative sample generation oper-
ation and thus is more space-saving and more flexible
against training batch size.

» Extensive experimental results on six benchmark datasets
demonstrate the superiority of the proposed method
against the existing state-of-the-art deep graph clustering
competitors.

Related Work
Attributed Graph Clustering

Graph Neural Networks (GNNs), which learn the represen-
tation from both node attributes and graph structures, have
emerged as a powerful approach for attributed graph clus-
tering. Specifically, GAE/VGAE (Kipf and Welling|2016b)
embeds the node attributes with structure information via
a graph encoder and then reconstructs the graph structure
by an inner product decoder. Inspired by their success, re-
cent researches, DAEGC (Wang et al.[2019), GALA (Park

*****For Peer Review Only*****

et al.|2019), ARGA (Pan et al.|[2019) and AGAE (Tao et al.
2019) further improve the early works with graph attention
network, Laplacian sharpening, and generative adversarial
learning. Although achieving promising clustering perfor-
mance, the over-smoothing problem has not been effec-
tively tackled in these methods, which affects the cluster-
ing performance. More recently, SDCN (Bo et al.[2020) and
DFCN (Tu et al.|2020)) are proposed to jointly learn an Auto-
Encoder (AE) (Yang et al.|2017) and a Graph Auto-Encoder
(GAE) (Kipf and Welling 2016b) in a united framework
to alleviate the over-smoothing problem via an information
transport operation and a structure-attribute fusion module,
respectively. Although both methods have proved that intro-
ducing the attribute features into the latent structure space
can effectively address the over-smoothing issue, SDCN and
DFCN suffer from another non-negligible limitation, i.e., in-
formation correlation, resulting in less discriminative repre-
sentations and sub-optimal clustering performance. In con-
trast, our method improves the existing advanced deep graph
clustering algorithm by introducing a dual information cor-
relation reduction mechanism from the perspective of sam-
ple and feature levels to alleviate representation collapse.

Representation Collapse

Representation collapse, which maps all data into a same
representation, is a common issue in current self-supervised
representation learning methods. Some contrastive learning
methods are proposed to solve this problem. MoCo (He et al.
2020) utilizes a momentum encoder to maintain the consis-
tent representation of negative pairs drawn from a memory
bank. SimCLR (Chen et al.|[2020) defines the “positive” and
“negative” sample pairs, and pulls closer the “positive” sam-
ples existing in the current batch while pushing the “neg-
ative” samples away. By replacing the empty cluster with
a perturbated non-empty cluster, DeepCluster (Caron et al.
2018)) is able to alleviate the collapsed representation. In ad-
dition, BYOL (Grill et al.|2020) and SimSiam (Chen and
He|2021) have demonstrated that the momentum encoder
and the stop-gradient mechanism are crucial to avoid repre-
sentation collapse without demanding negative samples for
producing prediction targets. More recently, a simple yet
effective algorithm, Barlow Twins (Zbontar et al.[2021) is
proposed to alleviate the collapsed representation by reduc-
ing the redundant information between the representation of
distorted samples. Inspired by its advantages, we naturally
extend the idea of Barlow Twins into deep graph clustering
and further design a dual correlation reduction mechanism to
address representation collapse in deep clustering network.
Compared to other contrastive learning methods, our pro-
posed method learns the discriminative embedding to avoid
collapse without negative sample generation, large batches
or asymmetric mechanisms.

Dual Correlation Reduction Network

We introduce a novel self-supervised deep graph cluster-
ing method termed Dual Correlation Reduction Network
(DCRN), which aims to avoid representation collapse by re-
ducing information correlation in a dual manner. As illus-
trated in Fig. [2] DCRN mainly consists of two components,
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Figure 2: Illustration of the Dual Correlation Reduction Net-
work (DCRN). In the proposed algorithm, the graph distor-
tion module first generates two distorted graphs by introduc-
ing attribute and graph disturbances. Then, by forcing the
same sample within two distorted graphs to have identical
representations in both feature level and sample level, while
different samples have different representations also in dual
levels, the network is guided to be more discriminative with
less memory consumption.

i.e., a graph distortion module and a dual information cor-
relation reduction (DICR) module. Note that the extraction
backbone network of DCRN is similar to that of DFCN (Tu.
et al.|2020). In the following sections, We will introduce the
graph distortion module, DICR module, and network objec-
tives in detail.

Notations and Problem Definition

Given an undirected graph G = {V, £} with C categories
of nodes, V = {v1,vs,...,vx} and £ are the node set and
the edge set, respectively. The graph is characterized by its
attribute matrix X € RY*P and original adjacency ma-
trix A = (a;;)nxn, Where a;; = 11if (v;,v;) € &, oth-
erwise a;; = 0. The corresponding degree matrix is D =
diag(dl, do,..., dN) € RN*N and d;, = Z(vi_vj)eg Qi
With D, the original adjacency matrix A can be normal-

ized as A € RV*Y through calculating D! (A + I), where
I € RV*N is an identity matrix. In this paper, we aim to
train a siamese graph encoder that embeds all nodes into the
low-dimension latent space in an unsupervised manner. The
resultant latent embedding can then be directly utilized to
perform node clustering by K-means (Hartigan and Wong
1979). The notations are summarized in Table E}

Graph Distortion Module

Recent efforts in self-supervised graph representation learn-
ing have demonstrated that graph distortion could enable the
network to learn rich representations from different contexts
for nodes (Hassani and Khasahmadi|2020; [You et al.|[2020).
Inspired by their success, as illustrated in Fig.[2] we consider
two types of distortion on graphs, i.e., feature corruption and
edge perturbation.
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Notations Meaning

X € RV*P Attribute matrix

A € RVXN Original adjacency matrix

D ¢ RV*V Degree matrix

A c RV*N Normalized adjacency matrix

A™ € RV*YN  Edge-masked adjacency matrix

A? ¢ RV*YN  Graph diffusion matrix
X € RV*P  Rebuilt attribute matrix
A c RV*XVN Rebuilt adjacency matrix

72’ ¢ RV*?  Node embedding in k-th view
Z ¢ RV Clustering-oriented latent embedding
Z"* ¢ R”X  Cluster-level embedding in k-th view

SY e RV*N  Cross-view sample correlation matrix

§7 e R4 Cross-view feature correlation matrix
Q c RV*¢ Soft assignment distribution
P c RV*C Target distribution

Table 1: Notation summary

Feature Corruption. For the attribute-level distortion, we
first sample a random noise matrix N € RY*® from a Gaus-
sian distribution A/(1, 0.1). Then the resulting corrupted at-

tribute matrix X € RV*P can be formulated:

X =XOoN, (1)

where © denotes the Hadamard product (Hornl[1990).

Edge Perturbation. In addition to corrupting node features,
for structure-level distortion, we introduce two strategies for
edge perturbation. One is similarity-based edge removing.
Thus, we first calculate the sample pair-wise cosine simi-
larity in latent space, and then generate a masked matrix
M € RM*N according to the similarity matrix, where the
lowest 10% linkage relation would be manually removed.
Finally, the edge-masked adjacency matrix A™ € RNV*N
would be normalized and be computed as:

A" =D 3 ((AOM)+I)D 3. )

The other is the graph diffusion, where we follow MV-
GRL (Hassani and Khasahmadi|2020) to transform the nor-
malized adjacency matrix to a graph diffusion matrix by Per-
sonalized PageRank (PPR) (Page et al.|1999):

Al=al-(1-a)D 3A+DD %),  (3)
where « is the teleport probability that is set to 0.2. Finally,

we denote G = (X,A™) and G2 = (X,A?) as two views
of the graph, respectively.

Dual Information Correlation Reduction

In this section, we introduce a dual information correla-
tion reduction (DICR) mechanism to filter the redundant in-
formation of the latent embedding in a dual manner, i.e.,
sample-level correlation reduction (SCR) and feature-level
correlation reduction (FCR), which aims to constrain our
network to learn more discriminative latent features, thus
alleviating representation collapse. SCR and FCR are both
illustrated in Fig.3]in detail.
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Figure 3: INlustration of Dual Information Correlation Re-
duction (DICR) mechanism.

Sample-level Correlation Reduction. The learning process
of SCR includes two steps. For given two-view node embed-
dings Z** and Z"? learned by a siamese graph encoder, we
firstly calculate the elements in cross-view sample correla-
tion matrix § € RVN*N by:

N (2 (Z3)T

i T o1 0s 1) Vz,]E[I,N], (4)
Tz

where Sﬁ € [—1,1] denotes the cosine similarity between
i-th node embedding in the first view and j-th node embed-
ding in the second view. After that, we make the cross-view
sample correlation matrix SV to be equal to an identity ma-

trix I € RV*Y | formulated as:

N

“F L) e R )

i=1 i=1 j#i
(5)

where the first term encourages the diagonal elements in sV
equal to 1, which indicates that the embedding of each node
in two different views are enforced to agree with each other.
The second term makes the off-diagonal elements in sV
equal to 0 to minimize the agreement between embeddings
of different nodes across two views. This decorrelation op-
eration could help our network reduce the redundant infor-
mation among nodes in the latent space so that the learned
embedding could be more discriminative.

Feature-level Correlation Reduction. Apart from build-
ing nontrivial embeddings by reducing the sample corre-
lation across two views, we further consider to refine the

*****For Peer Review Only*****

information correlation from the aspect of feature dimen-
sion. Specifically, Fig. B]illustrates our feature-level correla-
tion reduction design, which is implemented in three steps.
First, we project two-view node embeddings Z** and Z"?

into cluster-level embeddings Z" andZ” € RIxXK using a
readout function R(-) : RN — R4 X formulated as:

ka -R ((ka)T> . (6)

~v

Then we again calculate the cosine similarity between Z '
~U . . .

andZ ° along with the feature dimension, that’s:

FV1N\ FV2\T
@&

~VU1 ~V2 9

NZ; 11112

i Vi€ [l,d, (7)
where Si]; denotes the feature similarity between i-th di-
mension feature in one view and j-th dimension in another
view. Thereafter, similar to the objective functions Eq. (3)),
we make the cross-view feature correlation matrix S7 to be
equal to an identity matrix I € R?¥9:

1 ~
Lr=— > (87 -1
s (8

1< 21
R

i=1 j#i

where d is the latent embedding dimension. Both terms in
Eq. (8) mean that the representations of the same dimension
feature in two augmented views are pulled closer while oth-
ers are pushed away, respectively. Finally, we combine the
decorrelated latent embeddings from two views with a linear
combination operation, thus the resultant clustering-oriented
latent embeddings Z € RV *? can then be used to performed
clustering by K-means (Hartigan and Wong|1979)):

1
7= 2(
Technically, the proposed DICR mechanism considers the
correlation reduction in both the perspective of the sample
and feature level. In this way, the redundant features could
be filtered while more discriminative features could be pre-
served in the latent space, thus the network can learn mean-
ingful representations to avoid collapse for clustering per-
formance improvement.
Propagated Regularization. Furthermore, in order to alle-
viate the over-smoothing phenomenon during the network
training, we introduce a propagation regularization formu-
lated as:

7'+ 7). 9)

Lr=JSD(Z, AZ), (10)
where J S D(-) refers to the Jensen-Shannon divergence (Fu-
glede and Topsoe|2004). With Eq. (T0), the network is able
to capture long-distance information with shallow network
structure to alleviate over-smoothing when the propagated
information goes deeper throughout the framework. In sum-
mary, the objective of DICR module can be computed by:

Lprcr =LN + Lr + LR, (11)

where 7 is a balanced hyper-parameter.
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Algorithm 1: Dual Correlation Reduction Network

Input: Two-view graphs: G' = (X,A™), G = (X, A%); Cluster
number C; Iteration number /; Hyper-parameters «y and A.
Output: The clustering result R.

1: Pre-train the baseline network to obtain Z;
2: Initialize the cluster centers u with K-means over Z;
3: fori=1to I do

: Utilize the baseline network to encode 7" and 2."2;
Calculate Z"" and Z"* by Eq. (@
Calculate SV and S by Eq. @) and Eq. (), respectively;
Conduct the sample-level and the feature-level correlation
reduction by Eq. @) and Eq. (7)), respectively;

8:  Fuse Z"' and Z"? to obtain Z by Eq. (9);

9:  Calculate Lprcr, LrEC, and Lk 1, respectively.
10:  Update the whole network by minimizing £ in Eq. (12);
11: end for
12: Obtain R by performing K-means over Z.
13: return R

A A

Objective Function

The overall optimization objective of the proposed method
consists of three parts: the loss of proposed DICR, the re-
construction loss, and the clustering loss:

L=Lprcr+ Lrec + kL, (12)

where Lrpc denotes the joint mean square error (MSE)
reconstruction loss of node attributes and graph struc-
ture adopted in (Tu et al.|2020). Lx; denotes the Kull-
back-Leibler divergence (Kullback and Leibler||1951), i.e.,
a widely-used self-supervised clustering loss (Xie, Girshick,
and Farhadi/2016; |Guo et al.|[2017; [Wang et al.|[2019; Bo
et al.|[2020; [Tu et al.|[2020), where we generate the soft as-
signment distribution Q € R > and the target distribution
P ¢ RV*Y over the clustering-oriented node embeddings
Z, and then align both distributions to guide the network
learning. The trade-off parameter A is set to 10. Here, for
the design of Lrpc and L, more details are described
in the origin paper of DFCN (Tu et al.|2020). The detailed
learning procedure of DCRN is shown in Algorithm [I]

Expriments
Datasets

To evaluate the effectiveness of the proposed method, we
conduct extensive experiments on six widely-used datasets,
including DBLP, CITE, ACM(Bo et al|[2020), AMAP,
PUBMED, and CORAFULL(Shchur et al.[2018)). The brief
information of these datasets is summarized in Table 2]

Experiment Setup

Training Procedure The proposed DCRN is imple-
mented with a NVIDIA 3090 GPU on PyTorch platform.
The training process of our model includes three steps. Fol-
lowing DFCN (Tu et al|[22020), we first pre-train the sub-
networks independently with at least 30 epochs by minimiz-
ing the reconstruction loss £rgc. Then both sub-networks
are directly integrated into a united framework to obtain the
initial clustering centers for another 100 epochs. Thereafter,
we train the whole network under the guidance of Eq.

Dataset Samples Dimension  Edges  Classes
DBLP 4057 334 3528 4
CITE 3327 3703 4552 6
ACM 3025 1870 13128 3
AMAP 7650 745 119081 8
PUBMED 19717 500 44325 3
CORAFULL 19793 8710 63421 70

Table 2: Dataset summary

for 400 epochs until convergence. Finally, we perform clus-
tering over Z by K-means (Hartigan and Wong||1979). To
avoid randomness, we run each method for 10 times and re-
port the averages with standard deviations.

Parameters Setting For ARGA/ARVGA (Pan et al.
2019), MVGRL (Hassani and Khasahmadi [2020), and
DFCN (Tu et al.[2020), we reproduce their source code by
following the setting of the original literature and present
the average results. For other compared baselines, we di-
rectly report the corresponding values listed in DFCN (Tu
et al.|2020)). For our proposed method, we adopt the code and
data of DFCN for data pre-processing and testing. Besides,
we adopt DFCN (Tu et al.|2020) as our backbone network.
The network is trained with the Adam optimizer(Kingma
and Ba|[2014) in all experiments. The learning rate is set
to le-3 for AMAP, le-4 for DBLP, 5e-5 for ACM, le-5
for CITE, PUBMED, and CORAFULL, respectively. The
hyper-parameters « is set to 0.1 for PUBMED and 0.2 for
other datasets. Moreover, we set A and y to 10 and 1e3, re-
spectively. K in Eq. [6]is set to the cluster number C'.

Metrics The clustering performance is evaluated by four
public metrics: Accuracy (ACC), Normalized Mutual Infor-
mation (NMI), Average Rand Index (ARI) and macro F1-
score (F1) (Liu et al.[2019a, 2018 2019b; Zhou et al.[[2019,
2020). The best map between cluster ID and class ID is con-
structed by the Kuhn-Munkres (Plummer and Lovasz|1986)).

Performance Comparison

To demonstrate the superiority of the proposed method, we
adopt 13 baselines for performance comparisons. Specifi-
cally, K-means (Hartigan and Wong|1979) is one of the most
classic traditional clustering methods. Three representative
deep generative methods, i.e., AE (Yang et al.[2017), DEC
(Xie, Girshick, and Farhadi||2016), and IDEC (Guo et al.
2017), train an auto-encoder and then perform a clustering
algorithm over the learned latent embedding. GAE/VGAE
(Kipf and Welling|2016b), DAEGC (Wang et al.|2019), and
ARGA/ARVGA (Pan et al.|[2019) are three typical GCN-
based frameworks that learn the representation for clustering
by considering both node attribute and structure informa-
tion. Furthermore, we report the performance of three state-
of-the-art deep clustering methods, i.e., SDCN/SDCNg, (Bo
et al.|2020), DFCN (Tu et al.|[2020), and MVGRL (Hassani
and Khasahmadi|[2020), which utilize two sub-networks to
process augmented graphs independently.

Table [3] reports the clustering performance of all com-
pared methods on six benchmarks. From these results, we
can conclude that 1) DCRN consistently outperforms all
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Dataset | Metric | K-Means AE DEC IDEC GAE VGAE DAEGC ARGA ARVGA SDCN_Q SDCN MVGRL DFCN | OURS
ACC | 38.65+0.65 51.43+0.35 58.16+0.56 60.31+0.62 61.21+1.22 58.59+0.06 62.05+0.48 64.83+0.59 54.41+0.42 65.74+1.34 68.05+1.81 42.73+x1.02 76.00+0.80 | 79.66+0.25
DBLP NMI 11.45+0.38 25.40+0.16 29.51+0.28 31.17+0.50 30.80+0.91 26.92+0.06 32.49+0.45 29.42+0.92 25.90+0.33 35.11x1.05 39.50+1.34 15.41+0.63 43.70+1.00 | 48.95+0.44
ARI 6.97x0.39  12.21£0.43 23.9240.39 25.37£0.60 22.02£1.40 17.92£0.07 21.03£0.52 27.99+0.91 19.81£0.42 34.00£1.76 39.15£2.01 8.22+0.50 47.00£1.50 | 53.60+0.46
F1 31.9240.27 52.53+0.36 59.38+0.51 61.33£0.56 61.41£2.23 58.69+£0.07 61.75£0.67 64.97+0.66 55.37+0.40 65.78+1.22 67.71£1.51 40.52£1.51 75.70+£0.80 | 79.28+0.26
ACC | 39.3243.17 57.0840.13 55.89+0.20 60.49+1.42 61.35+0.80 60.97+0.36 64.54+1.39 61.07+£0.49 59.31+1.38 61.67+1.05 65.96+0.31 68.66+0.36 70.86+0.18
CITE NMI 16.94+3.22  27.64+0.08 28.34+0.30 27.17+2.40 34.63+0.65 32.69+0.27 36.41+0.86 34.40+0.71 31.80+0.81 34.39+1.22 38.71+0.32 43.66+0.40
ARI 13.43+3.02 29.31+0.14 28.124#0.36  25.70£2.65 33.55x1.18 33.13%0.53 37.78+1.24 34.32+0.70 31.28+1.22 35.50£1.49 40.17£0.43 44.27+0.73 4 +0.30
F1 36.08+3.53 53.80+0.11 52.62+0.17 61.62£1.39 57.36£0.82 57.70£0.49 62.20+1.32 58.23+0.31 56.05+1.13 57.82+0.98 63.62£0.24 63.71£0.39 64.30+0.20
ACC | 67.3120.71 81.83+0.08 84.33+0.76 85.12+0.52 84.52+1.44 84.13+0.22 86.94+2.83 86.29+0.36 83.89+0.54 86.95+0.08 90.45+0.18 86.73+0.76 90.90+0.20 | 91.93+0.20
ACM NMI | 32.44£0.46 49.30£0.16 54.54£1.51 56.61£1.16 55.38£1.92 53.20+0.52 56.18+4.15 56.21x0.82 51.88+1.04 58.90+0.17 68.31£0.25 60.87£1.40 69.40£0.40 | 71.56+0.61
ARI 30.60£0.69 54.64+0.16 60.64+1.87 62.16£1.50 59.46£3.10 57.72+0.67 59.35+3.89 63.3720.86 57.77+1.17 65.25+0.19 73.91£0.40 65.07£1.76 74.90+£0.40 | 77.56+0.52
F1 67.570.74 82.01£0.08 84.51+0.74 85.11£0.48 84.65+1.33 84.17+0.23 87.07x2.79 86.31x0.35 83.87£0.55 86.84+£0.09 90.42+0.19 86.85+0.72 90.80+0.20 | 91.94£0.20
ACC | 27.2240.76 48.25+0.08 47.22+0.08 47.62+0.08 71.57+2.48 74.26+3.63 76.44+0.01 69.28+2.30 61.46+2.71 35.53+0.39 53.44+0.81 45.19+1.79 76.88+0.80 | 79.94+0.13
AMAP NMI 13.23x1.33  38.76+0.30 37.35+0.05 37.83x0.08 62.13%2.79 66.01£3.40 65.57+0.03 58.36+2.76 53.25+1.91 27.90+0.40 44.85+0.83 36.89+1.31 69.21+1.00 | 73.70+0.24
ARI 5.50£0.44  20.80+0.47 18.59+0.04 19.24+0.07 48.82+4.57 56.24+4.66 59.39+0.02 44.18+4.41 38.44+4.69 15.27+0.37 31.21£1.23 18.79£0.47 58.98+0.84 | 63.69+0.20
F1 23.96x0.51 47.87£0.20 46.71£0.12 47.20£0.11 68.08+1.76 70.38+2.98 69.97+0.02 64.30x1.95 58.50£1.70 34.25£0.44 50.66+1.49 39.65+2.39 71.58+0.31 | 73.82+0.12
ACC | 59.83x0.01 63.07+0.31 60.14+0.09 60.70+0.34 62.09+0.81 68.48+0.77 68.73+0.03 65.26+0.12 64.25+1.24 64.39+0.30 64.20+1.30 67.01£0.52 68.89+0.07 | 69.87+0.07
PUBMED NMI | 31.05£0.02 26.32+0.57 22.44+0.14 23.67+0.29 23.84+3.54 30.61x1.71 28.26+0.03 24.80£0.17 23.88+1.05 26.67+1.31 22.87+2.04 31.59+1.45 31.43£0.13 | 32.20+0.08
- ARI 28.10+0.01 23.86£0.67 19.55£0.13 20.58+0.39 20.62+1.39 30.15+1.23 29.84+0.04 24.35x0.17 22.82+1.52 24.61£1.46 22.30£2.07 29.42+1.06 30.64+0.11 | 31.41£0.12
Fl1 58.88+0.01 64.01£0.29 61.49£0.10 62.41£0.32 61.37+0.85 67.68+0.89 68.23+0.02 65.69+0.13 64.51£1.32 65.46+0.39 65.01£1.21 67.07+0.36 68.10£0.07 | 68.94:0.08
ACC | 26.27+1.10 33.1240.19 31.92+0.45 32.19+0.31 29.60£0.81 32.66+1.29 34.35%1.00 22.07+0.43 29.57+0.59 29.75+0.69 26.67£0.40 31.5242.95 37.51+0.81 | 38.80+0.60
CORAFULL NMI | 34.68+0.84 41.53+0.25 41.67+0.24 41.64+0.28 45.82+0.75 47.38+1.59 49.16£0.73 41.28+0.25 48.77£0.44 40.10£0.22 37.38+0.39 48.99+3.95 51.30£0.41 | 51.91%0.35
ARI 9.35£0.57  18.13+0.27 16.98+0.29 17.17£0.22 17.84+0.86 20.01%1.38 22.60+0.47 12.38+0.24 18.80+0.57 16.47+0.38 13.63£0.27 19.11£2.63 24.46+0.48 | 25.25+0.49
Fl1 22.57£1.09 28.40£0.30 27.71+0.58 27.72+0.41 25.95+0.75 29.06x1.15 26.96+1.33 18.85x0.41 25.43£0.62 24.62+0.53 22.14£0.43 26.51+2.87 31.22+0.87 | 31.68+0.76

Table 3: The average clustering performance with mean+std on six benchmarks. The red and blue values indicate the best and

the runner-up results, respectively.

Raw Data AE DEC

GAE

ARGA DFCN OURS

Figure 4: 2D visualization on two datasets. The first row and second row correspond to DBLP and ACM, respectively.

compared methods in terms of four metrics over all datasets.
SDCN/SDCNg (Bo et al|[2020), MVGRL (Hassani and
Khasahmadi|2020) and DFCN (Tu et al.|2020) have been
considered as three strongest deep clustering frameworks.
Taking the results on DBLP for example, our DCRN ex-
ceeds DFCN by 3.66% 5.25%, 6.60% 3.58% increments
with respect to ACC, NMI, ARI and F1. This is because both
SDCN and DFCN overly introduce the attribute information
learned by the auto-encoder part into the latent space, so that
the node embedding contains redundant attributes about the
sample, leading to representation collapse. In contrast, by re-
ducing the information correlation in a dual manner, DCRN
can learn more meaningful representation to improve the
clustering performance; 2) it can be observed that the GCN-
based clustering methods GAE/VGAE (Kipf and Welling
2016b), ARGA (Pan et al.|2019) and DAEGC (Wang et al.
2019) are not comparable with ours. This is because these
methods do not consider to handle information correlation
redundancy, thus resulting in the trivial constant representa-
tion; 3) our method improves the auto-encoder-based clus-
tering methods, i.e., AE (Yang et al.[2017)), DEC (Yang et al.
2017) and IDEC (Guo et al.|2017), by a large margin, all of
which have been verified strong representation learning ca-
pacity for clustering on non-graph data, while these meth-
ods that merely rely on attribute information can not effec-

tively learn discriminative information on graphs; 4) since
K-means (Hartigan and Wong||{1979) is directly performed
on raw attributes, thus achieving unpromising results. Over-
all, the aforementioned observations have demonstrated the
effectiveness of our proposed method in solving representa-
tion collapse issue. In the following section, ablation studies
of each module in DCRN will be introduced in detail.

Ablation Studies

Effectiveness of DICR Module We conduct an ablation
study to clearly verify the effectiveness of DICR module
and report the results in Table [ Here we denote the DFCN
(Tu et al.[|2020) as the Baseline since it’s the feature ex-
traction backbone of our network. Baseline-P, Baseline-D,
and Baseline-P-D denote that the baseline adopts the propa-
gated regularization, the DICR mechanism, and both. From
the results in Table ] we can observe that 1) compare
with the baseline, Baseline-P has about 0.5% to 1.0% per-
formance improvement in terms of four metrics on DBLP
dataset. These results demonstrate that introducing a regu-
larization term into the network training could improve the
generalization capacity of the model as well as alleviate the
over-smoothing; 2) Baseline-D consistently achieves better
performance than that of the baseline. Taking the results
on DBLP for example, Baseline-D exceeds the baseline by
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Dataset ‘ Metric ‘ Baseline Baseline-P Baseline-D Baseline-P-D
ACC 76.000.80 77.00£0.41 79.63+0.27 79.66+0.25

DBLP NMI 43.70+1.00 44.98+0.56 48.95+0.48 48.95+0.44
ARI 47.00+1.50 48.51+0.84 53.48+0.51 53.60+0.46

F1 75.70+0.80 76.77+0.38 79.26+0.28 79.28+0.26

ACC 69.50+0.20 70.07+0.21 70.88+0.19 70.86+0.18

CITE NMI 43.90+0.20 44.75+0.40 45.92+0.35 45.86+0.35
ARI 45.50+0.30 46.52+0.36 47.73£0.29 47.64+0.30

Fl1 64.30+0.20 65.03+0.23 65.79+0.20 65.83+0.21

ACC 90.90+0.20 91.57+0.12 91.91+0.21 91.93+0.20

ACM NMI 69.40+0.40 70.82+0.25 71.56+0.61 71.56£0.52
ARI 74.90+0.40 76.68+0.28 77.50£0.53 77.56£0.52

F1 90.80+0.20 91.53+0.12 91.90+0.21 91.94+0.20

ACC 76.88+0.80 79.01£0.01 79.95+0.04 79.94+0.13

AMAP NMI 69.21£1.00 72.2940.01 73.69+0.05 73.70+0.24
ARI 58.98+0.84 62.1+0.01 63.70+0.05 63.69+0.20

F1 71.58+0.31 73.09£0.00 73.84+0.03 73.82+0.12

ACC 68.89+0.07 69.43+0.05 69.74+0.06 69.87+0.07

NMI 31.43+0.13 31.98+0.12 32.04+0.06 32.20+0.08

PUBMED ARI 30.64+0.11 31.35+0.12 31.14+0.11 31.41£0.12
F1 68.10+0.07 68.54+0.06 68.81+0.07 68.94+0.08

ACC 37.51+0.81 37.04+0.71 38.23+0.59 38.80+0.60

NMI 51.30+0.41 51.90+0.26 50.85+0.36 51.91+0.35

CORAFULL ARI 24.46+0.48 24.13£0.51 24.83+0.37 25.25+0.49
F1 31.22+0.87 30.35+0.87 31.34+0.81 31.68+0.76
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Table 4: Ablation comparisons of DICR mechanism and the
propagated regularization on six datasets.

3.63%, 5.25%, 6.48%, 3.56% performance increment with
respect to ACC, NMI, ARI and F1. It benefits from that we
conduct a DICR mechanism to enhance the discriminative
capacity of the latent embedding for clustering performance
improvement. We can obtain similar conclusions from the
results on other datasets; 3) the results in the last column of
Table [ further verify the effectiveness of both components.
As seen, Baseline-P-D achieves the best results compared to
other variants.

Effectiveness of Dual Level Correlation Reduction To
further investigate the superiority of the proposed DICR
mechanism, we experimentally compare our method (i.e.,
Baseline-F-S in Fig. [5) with three counterparts. Likewise,
we denote the DFCN as the Baseline. Baseline-F and
Baseline-S are denoted that the Baseline merely adopts
feature-level and sample-level correlation reduction strategy,
respectively. From the results in Fig. 5] we can see that 1)
Baseline-F outperforms Baseline in terms of four matrices
on four of six datasets, but obtains unsatisfied performance
on DBLP and CORAFULL. This is because the learned em-
bedding is not robust without considering sample-level cor-
relation redundancy; 2) the performance of Baseline-S is
consistently better than that of Baseline over all datasets.
For instance, Baseline-S obtains 3.60% accuracy improve-
ment on DBLP. It shows that the decorrelation operation
of samples is effective in filtering redundant information
of two views while preserving more discriminative features
for improving the clustering performance; 3) Baseline-F-S
could leverage two types of correlation reduction to make
the learned latent embedding more discriminative for better
clustering. In summary, the above observations well demon-
strate the effectiveness of dual level correlation reduction
strategy.

Hyper-parameter Analysis of ' Furthermore, we inves-
tigate the influence of hyper-parameter K. From Fig. [6] we

Figure 5: Ablation comparisons of dual information correla-
tion reduction on six datasets.

Accuracy (%) Accuracy (%)

‘‘‘‘‘‘

\\\\\

Figure 6: Clustering accuracy vs. hyper-parameter K.

observe that 1) the accuracy metric first increases to a high
value and generally maintains it up to slight variation with
the increasing value K'; 2) the method tends to perform well
when K is equal to the number of clusters C'; 3) our DCRN
is insensitive to the variation of the hyper-parameter K.

t-SNE Visualization of Clustering Results In order to
show the superiority of DRCN intuitively, we visualize the
distribution of the learned node embedding Z of DBLP and
ACM generated by AE, DEC, GAE, ARGA, DFCN and our
DCRN via t-SNE (Van der Maaten and Hinton|2008)). As il-
lustrated in Fig.[4] the visual results demonstrate that DCRN
have a clearer structure, which can better reveal the intrinsic
clustering structure among data.

Conclusion

In this work, we propose a novel self-supervised deep graph
clustering network termed as Dual Correlation Reduction
Network (DCRN). In our model, a carefully-designed dual
information correlation reduction mechanism is introduced
to reduce the information correlation in both sample and fea-
ture level. With this mechanism, the redundant information
of the latent variables from two views can be filtered out
and more discriminative features of both views can be well
preserved. It plays an important role in avoiding represen-
tation collapse for better clustering. Experimental results on
six benchmarks demonstrate the superiority of DCRN.
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