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SGD Momentum based on Inter-gradient
Collision

Weidong Zou*, Yuanqing Xia , Weipeng Cao, Gao Huang, Yizeng Han, and Xinwang Liu.

Abstract—Deep neural networks (DNNs) are widely used in every field, such as computer vision and natural language processing.
And the optimizer is the main part of DNNs training. SGD-Momentum performs well in many DNNs methods (ResNet and DenseNet)
because of its simpleness and currency, which is the most general optimizer at present. Even so, the slow convergent rate of
SGD-Momentum has extremely restricted its application. Inter-gradient collision is integrated into SGD-Momentum to improve
convergent rate, which is inspired by the elastic collision model in physics. And we term it SGD-Momentum based on inter-gradient
collision (ICSGD-Momentum). We also give a theoretical proof of convergence and a regret bound on the ICSGD-Momentum method.
Extensive experiments on function optimization, CIFAR-100, ImageNet, Penn Treebank, COCO, and YCB-Video show that
ICSGD-Momentum can accelerate the training process and improve the generalization performance of DNNs compared to
SGD-Momentum, Adam, RAdam, Adabound, and AdaBelief.

Index Terms—Deep Neural Networks, SGD, Adam, optimization algorithm.
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1 INTRODUCTION

OWING to the availability of massive machine learning data-
sets such as TEyeD [1], ImageNet [2], deep neural networks

(DNNs) based on complicated neural network structure have made
considerable progress such as ResNet [3], and DenseNet [4].
Despite the success of the experiment and application for DNNs,
massive public data-sets, powerful computing resources and ad-
vanced optimization algorithms are used to train DNNs which
is time-consuming. Therefore, how to accelerate the training of
DNNs is becoming a new research topic.

The core of the training of DNNs is optimizer. At present,
optimizer of DNNs is categorized into three types by optimization
strategy, which are acceleration strategy (SGD, SGD-Momentum,
PID), adaptation strategy (AdaGrad, RMSProp), acceleration and
adaptation strategy (Adam, Adabound) as show in Table 1, which
gt denotes gradients of stochastic objective for DNNs at time-
step t, ϕ1(t) =

∑t
i=1 µ

t−i
1 gi, ϕ2(t) =

∑t
i=1 µ

t−i
1 (gi −

gi−1), ϕ3(t) =
∑t

i=1 gi ⊙ gi, ϕ4(t) =
∑t

i=1 µ
t−i
2 gi ⊙ gi,

φ1(t) =
∑t

i=1 µ
t−i
1 , φ2(t) =

∑t
i=1 µ

t−i
2 , φ3(t) =

(1−µ2)t
(1−µ2)t+1 ,

ϕ5(t) = Clip( 1√
(1−µ2)ϕ4(t)

, φ3(t)
10 , 1

10φ3(t)
), µ1, µ2 ∈ [0, 1)

are the hyper-parameters of optimization methods, which adjusts
the exponential decay rates of these moving averages. δ is a
considerably small constant (δ = 10−8), and Kd is hyper-
parameter of PID based optimization method, which can be tuned
by using the theory of Laplace Transform with Ziegler-Nichols.
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The series of adaptive methods (adaptation strategy, accelera-
tion and adaptation strategy) adjust the learning rate according to
the gradient value of the independent variable in each dimension,
thereby avoiding the problem that the unified learning rate is
difficult to adapt to all dimensions. Many cases show that adaptive
methods can accelerate the training speed of DNNs.

In spite of their popularity, with the in-depth study of the
related optimization algorithms, researchers find that these adap-
tive optimization algorithms are easy to generate extreme learning
rates during the training process, which will seriously affect the
stability of the model, resulting in the model performance is not
as good as that using SGD in some scenarios [10], [11].

As shown in Table 1, SGD-Momentum introduces first-order
momentum on the basis of SGD for suppressing the oscillation of
SGD. SGD and SGD-Momentum are simple and easy to imple-
ment, and they have been applied to many scenarios. According
to [6], the strategy of PID is to consider present, past and changing
information of gradients to optimize the parameters of DNNs.
However, SGD-Momentum and PID suffer from the overshoot
problem [6] that the value of parameters exceeds the value of
target and can not change along the gradient direction.

One commonly quadratic function is used to test overshoot
for SGD-Momentum and PID. The function can be defined as
f(x) = (x − 1)2 + 2 which as shown in Fig. 1, and the search
domain of quadratic function is −5 ≤ x ≤ 7. There is a global
minimum of quadratic function: x̃ = 1, f(x̃) = 2. The learning
rate and number of iterations for SGD, SGD-Momentum and PID
are set to 0.05 and 100 respectively. µ1 of SGD-Momentum is 0.9,
Kd of PID is 10.

As shown in Fig. 2, compared with SGD, the change trend
of the evolution of value for SGD-Momentum and PID fluctuates
greatly, and the convergence speed of PID is better than SGD-
Momentum. But the results prove that SGD-Momentum and PID
have obvious overshoot problem.

In order to solve overshoot problem of SGD-Momentum, we
propose SGD-Momentum based on inter-gradient collision which
is inspired by [12]. Compared with existing SGD-Momentum
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TABLE 1: The overview of SGD, SGD-Momentum, PID, RMSProp, AdaGrad, Adam and Adabound

Strategy Optimization Methods Key Step

Accelerated
SGD θt = θt−1 − λgt

SGD-Momentum [5] θt = θt−1 − λ(gt + ϕ1(t))
PID [6] θt = θt−1 − λ(ϕ1(t) +Kd(1− µ1)ϕ2(t))

Adaptive AdaGrad [7] θt = θt−1 − λ√
ϕ3(t)+δ

⊙ gt

RMSProp [8] θt = θt−1 − λ√
(1−µ2)ϕ4(t)+δ

⊙ gt

Accelerated and Adaptive Adam [9] θt = θt−1 − λ

φ1(t)(

√
ϕ4(t)
φ2(t)

+δ)
⊙ ϕ1(t)

Adabound [10] θt = θt−1 − λ(1− µ1)ϕ1(t)⊙ ϕ5(t)

Fig. 1: Quadratic function

Fig. 2: Overshoot problem of SGD-Momentum and PID for quadratic
function

method, ICSGD-Momentum introduces elastic collision factor
α (1 < α < 2) as its past and current gradients as αgt +
(α − 1)ϕ1(t) (gt denotes gradients of stochastic objective for
DNNs at time-step t, ϕ1(t) =

∑t
i=1 µ

t−i
1 gi, µ1 ∈ [0, 1) are

the hyper-parameters of optimization methods). Then we have
proved the advanced nature of this improvement theoretically and
experimentally. The contributions of this paper can be summarized
as follow:

1) We propose a novel optimization method for DNNs, which
is called as ICSGD-Momentum. Inter-gradient collision model
will be constructed as αgt + (α − 1)ϕ1(t) based on past and

current gradients of loss function for DNNs.
2) The effectiveness of ICSGD-Momentum is verified on some

classical data-sets (i.e., CIFAR-100, ImageNet, Penn Treebank,
COCO and YCB-Video) and extensive experimental results show
that ICSGD-Momentum can achieve state-of-the-art performance.

2 THE DETAILS OF THE PROPOSED ICSGD-
MOMENTUM OPTIMIZATION ALGORITHM

2.1 Convergence Analysis for ICSGD-Momentum
ICSGD-Momentum is an improved SGD-Momentum whose basic
idea is to build inter-gradient collision model as follows by
introducing elastic collision factor α.

ut = αgt + (α− 1)
t∑

i=1

µt−i
1 gi. (1)

then we prove that ICSGD-Momentum has regret bound using the
following theorems.

Theorem 2.1: Given the cost function ft(θ) of DNNs has
bounded gradients, which can be represented as gt = ▽θft(θt)
and ∥gt∥2 < G1, G1 is a constant. Let the distance between any
θt generated by ICSGD-Momentum is bound, ∥θq −θp∥2 < G2,
where G2 is a constant. For any p, q ∈ [1, ..., T ], 0 < µ1 < 1 <
α < 2 and µ1+α ≤ 2, we set τt = τ√

t
, then ICSGD-Momentum

brings the following guarantee (for all T ≥ 1):

RT =
T∑

t=1

[ft(θt)− ft(θ∗)]

< G2
2(

√
T

τ
+ 2) +

τ√
T
(3 + α2)

T∑
t=1

∥gt∥22. (2)

where ft(θt) is convex cost function at each time t, ft(θ∗) is
the best fixed point parameter from a feasible set χ when θ∗ =
argminθ∈χ

∑T
t=1 ft(θ) [9].

Proof. According to algorithm 1, we have

∥ut∥22 = ∥αgt + (α− 1)
t∑

i=1

µt−i
1 gi∥22

< α2∥gt∥22 + (α− 1)2
t∑

i=1

µt−i
1 ∥gi∥22

< α2∥gt∥22 + (1− µ1)
t∑

i=1

µt−i
1 ∥gi∥22. (3)

According to Lemma 2 of [13], we get

T∑
t=1

∥ut∥22 < α2
T∑

t=1

∥gt∥22 + (1− µ1)
T∑

t=1

t∑
i=1

µt−i
1 ∥gi∥22
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= α2
T∑

t=1

∥gt∥22 + (1− µ1)
T∑

t=1

T∑
t=i

µt−i
1 ∥gi∥22

< (1 + α2)
T∑

t=1

∥gt∥22. (4)

According to Lemma 10.2 of [9], we have

ft(θt)− ft(θ∗) < ⟨gt,θt − θ∗⟩. (5)

Furthermore,

θt+1 = θt − λ(αgt + (α− 1)
t∑

i=1

µt−i
1 gi). (6)

Subtract θ∗ and square both side of Equ. (6), we get

∥θt+1 − θ∗∥22 = ∥θt − θ∗ − τtut∥22
= ∥θt − θ∗∥22 + τ2t ∥ut∥22 − 2τt⟨ut,θt − θ∗⟩
= ∥θt − θ∗∥22 + τ2t ∥ut∥22
− 2τtα⟨gt,θt − θ∗⟩

− 2τt(α− 1)⟨
t∑

i=1

µt−i
1 gi,θt − θ∗⟩, (7)

then we have

⟨gt,θt − θ∗⟩ =
∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22

2τtα

+
τt∥ut∥22 − 2(α− 1)⟨

∑t
i=1 µ

t−i
1 gi,θt − θ∗⟩

2α

<
∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22

2τtα

+
τt∥ut∥22
2α

+
(α− 1)(

∑t
i=1 µ

t−i
1 ∥gi∥22 + ∥θt − θ∗∥22)

α

<
∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22

2τtα
+

τt∥ut∥22
2α

+
(1− µ1)(

∑t
i=1 µ

t−i
1 ∥gi∥22 + ∥θt − θ∗∥22)

α
,(8)

Therefore, we have the following regret bound:

R(T ) =
T∑

t=1

[ft(θt)− ft(θ∗)]

≤
T∑

t=1

⟨gt,θt − θ∗⟩

<
T∑

t=1

[
∥θt − θ∗∥22 − ∥θt+1 − θ∗∥22

2τtα

+
τt∥ut∥22 + 2(1− µ1)(

∑t
i=1 µ

t−i
1 ∥gi∥22 + ∥θt − θ∗∥22)

2α
]

<
T∑

t=1

[
∥θt − θ∗∥22

2α
(
1

τt
+ 2(1− µ1))

+
τt∥ut∥22 + 2(1− µ1)

∑t
i=1 µ

t−i
1 ∥gi∥22

2α
]

<
T∑

t=1

(G2(
1

τt
+ 2) + τt∥ut∥22 + 2(1− µ1)

t∑
i=1

µt−i
1 ∥gi∥22)

< G2(

√
T

τ
+ 2) +

τ√
T

T∑
t=1

∥ut∥22

+ 2(1− µ1)
T∑

i=1

T∑
t=i

µt−i
1 ∥gi∥22

< G2
2(

√
T

τ
+ 2) +

τ√
T
(3 + α2)

T∑
t=1

∥gt∥22. (9)

2.2 Pseudo-code for ICSGD-Momentum
The proposed ICSGD-Momentum algorithm can be summarized
as follows:

Algorithm 1 ICSGD-Momentum

Input: Initial parameter vector θ0, λ = 0.1, α = 1.1 and
µ1 = 0.9.
Output: The parameters θT of the model.
for q = 1; q ≤ T do

gq = ▽θfq(θq−1);
θq = θq−1 − λ(αgq + (α− 1)

∑q
i=1 µ

q−i
1 gi).

end for

3 SIMULATION EXPERIMENTS AND DISCUSSIONS

3.1 Setup of Experiments
In this section, we adopt function optimization, image classifi-
cation, image recognition, language modeling with LSTM and
object detection to compare of performance of ICSGD-Momentum
with multiple optimization algorithms (e.g., SGD-Momentum,
AdaBound, AdaBelief [14], RAdam [15]). All experiments are
conducted under Pytorch 1.7 framework with NVIDIA TITAN
RTX GPU.

3.2 Function Optimization
In order to simply verify the effectiveness of ICSGD-Momentum
(α = 1.1), based on Fig. 1 and 2, we add ICSGD-Momentum
for quadratic function. The results of the experiment is shown
in Fig. 3. As shown in Fig. 3, the overshoot value of ICSGD-
Momentum is less than SGD-Momentum and PID, and the change
trend of the evolution of value for ICSGD-Momentum fluctuates
more smoothly than SGD-Momentum and PID.

3.3 Experiments on CIFAR-100
For adaptive optimization algorithms, we set µ1 = 0.9, µ2 =
0.999 and the initial learning rate λ = 0.001. The initial
learning rate λ is set to 0.1 for SGD-Momentum and ICSGD-
Momentum(α = 1.1). In our experiments, we employ the learning
rate decay scheme at epoch 150 by multiplying 0.1. The number
of epochs is 200. The cross-entropy is chosen as the loss function
and the weight decay technique is applied on the parameters to
prevent over-fitting. The mini-batch size is set to 128.

The results of running DenseNet-121 on CIFAR-100 are
shown in Fig. 4 and Fig. 5, respectively. From Fig. 4 and Fig.
5, it can observe the following phenomena:

• RAdam can achieve faster convergence rate and better
prediction performance than others in the early training
phase of the model (i.e., before the learning rate decay
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Fig. 3: Overshoot problem of SGD-Momentum, PID and ICSGD-
Momentum for quadratic function

point), but the test loss of RAdam is worse than other
optimization methods.

• When the learning rate is decayed at epoch 150, the
upward trend goes into reverse and the testing accuracy
of SGD-Momentum started to creep down again, and the
testing accuracy of ICSGD-Momentum gradually exceeds
that of other optimization methods.

Fig. 4: Testing accuracy curves of DenseNet-121 with different
optimizers on CIFAR-100

3.4 Experiments on ImageNet

In our experiments, we also evaluate the performance of ResNet-
18 with ICSGD-Momentum on ImageNet (ILSVRC2012 1). Fol-
lowing the common practice in [4], we do the standard data
augmentation and crop the images to a unified size of 224×224.
Then we compare the performance of ICSGD-Momentum with
four optimizers, i.e. SGD-Momentum, RAdam and AdaBound.
The experiments are conducted on TITAN RTX GPU for 90
epochs with a batch size of 256. The initial learning rate for SGD-
Momentum and ICSGD-Momentum is set to 0.1. Following the

1. http://image-net.org/challenges/LSVRC/2012/

Fig. 5: Log testing loss curves of DenseNet-121 with different opti-
mizers on CIFAR-100

settings in [13] the learning rate is set to 0.001 initially for RAdam
and AdaBound. For all the optimizers, the learning rate is lowered
by a factor of 10 after epoch 60.

Fig. 6: Testing accuracy curves of ResNet-18 with different optimizers
on ImageNet

As shown in Fig. 6 and Fig. 7, the convergence and prediction
ability of RAdam are the best before the first learning rate decay
point. But when the learning rates are decayed at epoch 60, the
testing accuracy of ICSGD-Momentum gradually exceeds that
of other optimization methods. ICSGD-Momentum obtains the
highest prediction accuracy after the first learning rate decay point.

3.5 Experiments on Penn Treebank

We evaluate the performance of 1-layer LSTM, 2-layer LSTM and
3-layer LSTM with ICSGD-Momentum on the Penn TreeBank.
Following the settings in [14], we represent the perplexity (lower
is better) on the test set in Fig. 8, Fig. 9 and Fig. 10. For 1-layer, 2-
layer and 3-layer LSTM models, ICSGD-Momentum achieves the
lowest perplexity, validating its fast convergence as in acceleration
methods and good accuracy.
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Fig. 7: Log testing loss curves of ResNet-18 with different optimizers
on ImageNet

Fig. 8: Test set perplexity on Penn Treebank for 1-layer LSTM

Fig. 9: Test set perplexity on Penn Treebank for 2-layer LSTM

3.6 Experiments on COCO
Yolov5, as an end-to-end primary target detection algorithm, can
determine the target category and locate the target at one time.
The whole network structure is only composed of convolution
layer and input image. It has reached the advanced level of speed
and accuracy.

Fig. 10: Test set perplexity on Penn Treebank for 3-layer LSTM

We use SGD-Momentum (λ = 0.01, µ1 = 0.937), Adam
(λ = 0.001, µ1 = 0.9, µ2 = 0.999) and ICSGD-Momentum
(λ = 0.01, µ1 = 0.937, α = 1.1) to optimize Yolov5, and do
comparative experiments on COCO data-sets. mAP is used as the
metric to evaluate the performance, where the threshold of IOU
is 0.5, and the experimental results for different optimizers are
reported in Fig. 11.

Fig. 11: mAP curves of YOLOv5 on COCO

From the results obtained so far, it seem that ICSGD-
Momentum is superior to Adam and is not as good as SGD-
Momentum on the mAP of Yolov5 on COCO data-sets. Com-
pared with SGD-Momentum and Adam, mAP curves of ICSGD-
Momentum is the most stable.

3.7 Experiments on YCB-Video
The YCB-Video data-sets contains 21 object selected from the
YCB data-sets, and each object is different from each other from
the class or shape. The data-sets contains 92 videos, and each
video contain a series of RGB-D images, which are labeled with
6D pose, instance semantic mask and the object bounding box.
Each video is varying in the environment lighting, and the number
of the objects.
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In this part, we evaluate the ICSGD-Momentum, SGD-
Momentum, Adam, AdaBelief and AdaBound on the YCB-Video
data-sets, the method used in this section is the PVN3D. The YCB-
Video data-sets is split as the training set and the testing set, 80
videos are used for training and 12 videos are used for testing,
the operation is the same as the PVN3D. We follow the evaluation
metrics proposed in the PoseCNN [16]. The evaluation metrics
used in this part is the ADD(S), which means that if the object is
symmetric, the ADD-S is used, else the ADD is used.

In this experiment, if the translation and rotation errors are
below 5 cm and 5 degree respectively, the predicted pose is correct.
The loss function is the same as function proposed in PVN3D, and
the learning rate is 0.1. The PVN3D is optimizer by the ICSGD-
Momentum, SGD-Momentum, Adam, AdaBelief and AdaBound
respectively, and the validating accuracy is shown as Fig. 12.

Fig. 12: Accuracy curves for PVN3D on YCB-Video

As shown in Fig. 12, the validating accuracy of SGD-
Momentum is lowest, the adaptive optimization algorithms
(Adam, AdaBelief and AdaBound) can achieve faster convergence
and higher validating accuracy in the whole training process of
PoseCNN. When the validating accuracy exceed 0.95, curves
exhibit oscillations apparently for the adaptive optimization algo-
rithms. The curve of ICSGD-Momentum is relatively stable, and
the validating accuracy is highest when the epoch is 70.

4 CONCLUSIONS

Inspired by SGD-Momentum and inter-gradient collision, we pro-
posed a novel ICSGD-Momentum for DNNs in this paper, which
utilizes elastic collision factor α as its past and current gradients
as αgt + (α − 1)ϕ1(t) for improving overshooting problem.
At last, some famous data-sets are taken as typical examples to
demonstrate the effectiveness of this method.
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