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Dear editor and reviewers,

On behalf of all authors, I want to express our sincere gratitude to the editor and reviewers for those
constructive comments. Based on those comments, we have made a significant modification to the original
manuscript to address the issues raised by the reviewers, and more extensions have been made to enrich
the content of the paper. The revised manuscript benefits greatly from these insightful and perspicacious
comments. We have uploaded our responses as a separate file named “Summary of Changes” along with
our revised manuscript. At the end of response letter, we also attach the revised manuscript that highlights
all major changes in revision (“Revised Manuscript with Highlights”) for the convenience of review.

Best Regards,
Siqi Wang
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RESPONSE TO COMMENTS OF ASSOCIATE EDITOR

General comments: The authors are invited to improve the article and submit a ”MAJOR” revision.
Please understand that this does not imply the paper will be accepted simply because a revision is made.
To really be considered for acceptance, the article would need to be a truly impactful extension of the
original work, not a minor one.

Response: We deeply appreciate the editor’s kind decision and the precious opportunity offered for revising
the manuscript. In the revised manuscript, we have done our utmost to make more meaningful extensions,
which will be detailed in the rest part of the response letter. Meanwhile, all issues raised by reviewers
are responded in a point-by-point manner.

Comment 1: Impact beyond original NeurIPS paper (R1-1).

Response: Please refer to our response to comment 1.1 of the reviewer #1.

Comment 2: Improved Empirical Comparison and Additional Studies needed (R1-2 and R2-2).

Response: Please refer to our responses to comment 2 of the reviewer #1 and comment 2 of reviewer #2.

Comment 3: Review work on unsupervised anomaly detection (references missing), greater depth (not
just high-level) in the related work also (R1-3).

Response: Please refer to our response to comment 3 of the reviewer #1.

Comment 4: Technical points mentioned by R2 (R2-1 and R2-3).

Response: Please refer to our response to comment 1 and comment 3 of the reviewer #2.

Comment 5: There are a number of smaller local issues/concerns by both reviewers.

Response: Please refer to our point-by-point response to the rest of issues raised by reviewers.
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RESPONSES TO COMMENTS OF REVIEWER #1

Comment 1: This journal version does not make significant extensions to the NeurIPS version.

Comment 1.1: The main technical and theoretical contributions of this paper are still the same as that
in the conference version. The extensions are minor in the sense that 1) the performance improvement is
rather limited compared to the method in the conference version, and 2) the technical extensions are also
limited as it is easy to incorporate operations like score refinement and/or ensemble strategy to improve
the performance of a model.

Response: Thank you for your comments! We would like to express our sincere gratitude to the reviewer
for pointing out the drawbacks in our extension. In addition to our previous extensions, the revised
manuscript further differs from the conference version [1] in terms of the following aspects: (1) Compared
with the conference version that only explores the discriminative learning paradigm for deep OD, we
further design two brand-new deep OD solutions that can leverage generative learning paradigm (see
generative E3Outlier in the new Sec. 3.6.1 of revised manuscript) and contrastive learning paradigm (see
contrastive E3Outlier in the new Sec. 3.6.2 of revised manuscript) to provide self-supervision. With the
applicability to different learning paradigms, we extend the proposed E3Outlier from a specific single deep
OD solution to a more general self-supervised deep OD framework. (2) Compared with the performance
in the conference version, the new contrastive E3Outlier is able to achieve significant performance gain
(up to 4% to 6% AUROC) on relatively difficult colored benchmarks CIFAR10/SVHN/CIFAR100 (see
Sec. 4.2.1 and Table 1 of the revised manuscript). Besides, the new generative E3Outlier can leverage the
same CAE architecture to achieve evidently superior OD performance to existing CAE based deep OD
solutions, which further justifies the effectiveness of exploiting self-supervision information in deep OD.
(3) Compared with the conference version that only applies E3Outlier to the outlier image removal task,
we further demonstrate its effectiveness to another important deep OD application–unsupervised video
abnormal event detection (UVAD). In particular, our evaluations on commonly-used video benchmark
datasets show that our E3Outlier based UVAD solution significantly outperforms state-of-the-art UVAD
methods by about 4% to 10% AUROC (see the new Sec. 4.3 and Table 6 of revised manuscript). (4)
More relevant analysis and discussion are presented in highlighted part of Sec. 4.2.1 and Sec. 4.2.3 of
the revised manuscript. Besides, we clarify the novelty of exploring network uncertainty in deep OD in
our response to Comment 1.2, and we add a separated paragraph at the end of Sec. 1 of the revised
manuscript to summarize all extensions made in the journal version. Considering those new extensions
above, we have changed the manuscript title to better reflect current content of the revised manuscript.

Comment 1.2: the authors argue the novelty of exploring network uncertainty here, but I disagree with
the argument in that 1) it is widely used in highly similar tasks like out-of-distribution detection and 2)
to my understanding, the gained improvement is mainly due to the score refinement operation rather than
the network uncertainty.

Response: Thank you for your comments! We would like to respond to the reviewer in terms of the
following aspects: (1) We must clarify that outlier detection (OD) problem discussed in this paper is an
essentially different task from out-of-distribution detection (OOD) or (semi-supervised) anomaly detection
(AD) problem, and the sense that they are similar mainly comes from the mixed use of terms in literature,
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Inliers

Outliers

(a) Outlier detection (OD) handles completely unlabeled
data, while outliers are detected from given data by some
outlierness measure like density or proximity. OD does not
label a training set to build an inductive model.

Out-of-distribution data

Class 1

Class 2

In-distribution data

(b) Out-of-distribution detection (OOD) with a labeled two-
class training set (red and green circle). OOD usually
takes labeled binary/multi-class data set as the training
set to train an inductive model. During the inference, the
model is supposed to classify class 1 and 2, while the
data inside/outside the circle domain are viewed as in-
distribution/out-of-distribution data.

Normality

Anomaly/Novelty

(c) Anomaly detection (AD) with upper right cluster labeled
as normal (red circle). The training set for AD usually shares
one common “normal” label when compared with OOD. The
primary goal of AD is to provide a valid description of the
normal data domain with a single-class training set.

Normality

Anomaly/Novelty

(d) Anomaly detection (AD) with all lower left data labeled
as normal (red circle). Note that the labeling of normal data
domain can be different in AD, which may lead to evidently
different detection results.

Fig. 1. The comparison of outlier detection/out-of-distribution detection/anomaly detection formulation in this paper.

i.e. OD/AD/OOD are often used interchangeably without a clear and strict definition. To avoid any further
confusion to the reviewer here, we resort to the example in Fig. 1 to differentiate them in this paper:

• OD is a long-standing problem [2] that handles completely unlabeled data, and it aims to detect
those minority data that divert significantly from the majority data using some outlierness measures
(e.g. proximity or density). Meanwhile, OD follows a transductive learning setup, i.e. OD directly
computes outlier scores of all given unlabeled data, and it does not require a separated labeled training
set to establish an inductive model. For example, as shown in Fig. 1(a), without any labeled training
data, two data clusters are likely to be viewed as inliers, while the rest of data that are distributed
distantly are viewed as outliers. Consequently, OD is a fully-unsupervised task.
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• OOD an is emerging topic [3] that aims to determine whether an incoming datum is from the same
data distribution of an trained model’s training data set. It often follows an inductive learning setup, as
it usually involves a labeled binary/multi-class training set to train an inductive model in a supervised
manner. As the example shows in Fig. 1(b), OOD leverages the labeled two-class data in the circle to
train a binary classifier. It is supposed to classify newly-incoming data into two classes and exclude
out-of-distribution data outside the training distribution. OOD differs from OD in two facets: 1) OOD
often requires a separated labeled training set to know which data should be viewed as in-distribution
data, while OD directly sorts out outliers from given unlabeled data by some outlierness measure. 2)
The labeled binary/multi-class training set still provides abundant supervision information for OOD,
and the OOD model (usually discriminative DNNs) can be easily trained in a supervised manner. It
significantly facilitates OOD to learn more reasonable representations than deep OD.

• AD, which may also be referred as novelty detection or one-class classification, is another classic
topic that aims to detect anomalies that are different from the labeled normal data. In fact, AD (rather
than OD) is a highly similar inductive task to OOD, because it also requires a labeled training set
to build a normality model, which is then used to discriminate anomalies or novelties in inference.
However, AD’s main difference from OOD is that its training data are usually labeled by one rough
label (“normal” or “observed”). Due to the absence of subclass labels within training data, AD does
not require classifying subclasses like OOD does during inference, and it is often viewed as a semi-
supervised problem that aims to establish a valid description of appointed normal data domain (a.k.a
data description [4]). Therefore, the labeling of normality domain plays an important role in AD: As
shown in Fig. 1(c) and Fig. 1(d), AD is expected to output completely different anomalies when the
labeling of normality is different. In other words, the detected anomalies/novelties are often influenced
by the definition of normality rather than the data distribution itself. This is different from OD that
manifests outliers by some intrinsic data characteristics within the unlabeled dataset.

The above clarifications of terms are also provided Sec. 1 of the revised manuscript (highlighted on page
1, right column, line 43-51) and Sec. 6 of supplementary material. Therefore, OD discussed in this paper is
essentially a different task from OOD in the first place. Compared with OOD, OD usually follows a more
traditional technical roadmap and relies on more intuitive and understandable outlierness measures, such
as distance, density or clustering structure [2]. To our best knowledge, none of previous works has ever
explored network uncertainty to conduct OD, although it has been used in the relevant but different task
(OOD). In the meantime, the idea to use network uncertainty in OD is based on a different assumption
from OOD, which makes it not as straightforward as OOD: As we explained previously, OOD is an
inductive task, and the DNN is only trained on labeled in-distribution data. Thus, it is safe to assume
that out-of-distribution data, which are not “seen” by the DNN in training, have large uncertainty in the
inference stage. By contrast, OD is a transductive task, and in our approach both inliers and outliers are
simultaneously fed into DNN to perform the same self-supervised learning process, where the process
is irrelevant to whether a datum is an inlier or outlier. Therefore, the DNN has “seen” both inliers and
outliers indiscriminately in the learning process, and it is no longer straightforward to assume that outliers
have larger uncertainty like OOD. In fact, the assumption that outliers have large uncertainty is based on
the proposed inlier priority in self-supervised learning, rather than whether a datum has been “seen” by
DNN in the previous training stage like OOD. As a consequence, we believe that pointing out that network
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uncertainty can be used as an effective outlierness measure for OD is novel in itself. (2) We would like
to clarify that the major intention for introducing the concept of network uncertainty into OD is not for
performance enhancement like score refinement. In our conference version [1], we only compared several
outlier scores empirically, and did not look deeper into the reason why maximum probability and entropy
based score outperform the baseline score by a notable margin in most cases. In this paper, the goal of our
extension is to provide more insights into this phenomenon. To this end, we unveil the common principle,
network uncertainty, behind those good-performing scores, and analyze the reason why those uncertainty
based scores can be more effective for discriminative E3Outlier (presented in Sec. 3.4.1 and Sec. 3.4.2
of the original manuscript). Afterwards, we further justify our analysis by designing a new outlier score
with a different uncertainty estimation method (MC-Dropout) in Sec. 3.4.3 of the original manuscript.
The new score is shown to produce fairly satisfactory OD performance as well, which is consistent with
our expectation. (3) As the reviewer suggests, we have compressed the content on network uncertainty, so
as to make room for our new extensions. Yet, we still believe that the discussion on network uncertainty
in deep OD is meaningful, as it will contribute to the readers’ understanding in this topic.

Comment 2: The empirical comparison needs to substantially improved.

Comment 2.1: First, the competing methods have some major issues. First of all, they are overwhelmingly
dominated by deep methods. Some of them are redundant, e.g., the competing methods are mainly AE-
based methods and further they basically do not work at all; why do we need RSRAE and RSRAE+ since
both of them work ineffectively.

Response: Thank you for your comment! We would like to make the following responses: (1) As the
reviewer suggests, we have added more competing methods that exploit classic shallow OD models and
features extracted from pretrained DNN models (see our responses to comment 2.3 below) for a more
comprehensive comparison. Besides, as the reviewer suggests, we have deleted the results of RSRAE+
and only preserve RSRAE in the comparison. (2) The focus of this paper is deep OD with visual data
like images. It is indeed a challenging topic that not much effort and progress has been made in literature
(please also refer to our detailed response to comment 2.2 below) when compared with other realms like
OOD and semi-supervised deep AD. As a results, we mainly compare deep methods in our previous
version, and their performance is indeed unsatisfactory. Thus, we did not deliberately exclude any deep
OD method that can yield better performance. In fact, such a gap is exactly the motivation of this paper.

Comment 2.2: Although there are significantly less work on deep unsupervised anomaly detection, there
still exist different approaches beyond just AE-based methods (some of them may be found in recent
survey papers in this area; others should be easily identified using proper key words).

Response: Thank you for your comments! We would like to make the following responses: (1) Actually,
we have reviewed and compared both AE and non-AE based deep OD methods within our best knowledge
at that time. Specifically, we have included MOGAAL [5], which is based on GANs and active learning,
into our comparison, and MOGAAL is the only non-AE based deep OD method we knew at that time. In
recent survey papers, AE is also described as the “commonly-used” [6], “core” [7], “central” [8] technique
used on deep OD, which are consistent with our review. Hence, the dominant role of AE in deep OD is
exactly the reason why most of deep OD methods reviewed in Sec. 2.2 of original manuscript are AE based.
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(2) After the reviewer pointed out this issue, we have carefully reviewed literature again by inspecting
recent survey papers [7], [8], [6], [2] and search engine like Google Scholar. Until the day we write this
response, we only discover one additional deep OD approach named RAMODO [9] that is not based on
AE. However, RAMODO performs very poorly in our experiments, because it is originally designed for
tabular data and does not contain any specialized module to perform image encoding like CAE. Thus,
due to the page limit, we omit the RAMODO in empirical evaluation and add the review on RAMODO
to Sec. 2.2 of the revised manuscript. (3) Above all, we must clarify that the definition of “unsupervised
deep outlier/anomaly detection” in many previous works is different from the definition of “unsupervised
OD” in this paper: Due to the lack of an unified definition, most works simply view “anomaly detection”
and “outlier detection” as interchangeable terms, and consider the semi-supervised case where model is
trained on pure normal data to be “unsupervised”. In fact, other research like the recent survey paper [6]
also pointed out such a confusion in terms. However, our paper strictly differentiates two terms in this
paper (see Sec. 1 on page 1, right column, line 43-51 of our paper) because they are essentially different
problems (see the detailed explanation in our response to Comment 1.2 above). We indeed notice few
deep methods that are not based on AE, but they are typically designed for the semi-supervised inductive
setup that assumes a training set with pure normal data, which is not in the scope of our paper. As a
consequence, the exploration of non-AE based deep OD is indeed insufficient.

Comment 2.3: I would suggest to include more two-stage methods as the competing methods using strong
DNN architecture like ResNet50 to extract image features, such as ResNet50+LOF, ResNet50+distance-
based measure, etc. This suggestion is based on the facts that 1) CAE-IF generally performs much better
than CAE, I would expect very good results of IF when better deep models are used for the feature
extraction, and 2) there are still many doubts in the area of outlier/anomaly detection that deep methods
are better than shallow methods.

Response: Thank you for your comment! As the reviewer suggests, we have added the comparison with
two-stage solutions (pretrained ResNet50+LoF and ResNet50+IF) to Sec. 4.1.2 and Table 1 of the revised
manuscript. The results suggest that they can indeed achieve highly competitive performance in some
cases, but they are still remarkably inferior to our discriminative and contrastive E3Outlier.

Comment 2.4: Second, as the ensemble strategy is used in the proposed method, it would be an unfair
comparison if it is not used in the competing methods. Please clarify.

Response: Thank you for your comment! As the reviewer points out, we test the ensemble strategy
with other deep OD approaches (e.g. CAE and DRAE), and the results show that it can also achieve
performance gain (typically 2% AUROC). Therefore, ensemble can actually be used as a more general
score refinement technique. For a fair comparison, we instead report the raw performance of E3Outlier
without any score refinement in Sec. 4.2.1 and Table 1 of the revised manuscript, while we discuss the
effect of score refinement separately in Sec. 4.2.2 of the revised manuscript. Note that removing the
ensemble strategy actually has no influence on the superiority of our method.

Comment 2.5: Third, the introduction motivates the readers with some really practical applications, but
the empirical results are just based on some popular image classification dataset benchmarks. I would
suggest the authors to add some datasets from real-life application cases. For example, as the authors

Page 7 of 71 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

mention video surveillance in the introduction and there are a number of publicly available datasets in
this direction, this may be used as a very good example in the empirical justification.

Response: Thank you for your comment! As the reviewer suggests, we have designed a E3Outlier based
solution to the application of unsupervised video abnormal event detection (UVAD) (detailed in the new
Sec. 4.3 of the revised manuscript). We evaluate our new UVAD solution on commonly-used public video
datasets of this direction. The experimental results (see Table 6 of the revised manuscript) demonstrate
that our solution significantly outperforms recent state-of-the-art UVAD solutions by 4% to 10% AUROC,
which justifies the flexibility and effectiveness of the proposed E3Outlier framework.

Comment 3: Important references are missing. Since the paper is focused on unsupervised anomaly
detection, it is important to review progress in this direction, especially deep unsupervised methods as
well as recently proposed shallow unsupervised methods. The current related work only has a rather
high-level summarization of classic outlier detection methods and AE-based deep methods.

Response: Thank you for your comment! As the reviewer points out, we have significantly expanded the
section of literature review, so as to provide a thorough and detailed review on both shallow and deep
OD methods (see Sec. 2.1 and Sec. 2.2 on page 3 of the revised manuscript).

Comment 4: There are a number of over-claimed/misleading statements.

Comment 4.1: ”While this setup is the most relevant and applicable one to the practical applications, it
also renders OD a highly challenging problem” Do you have any evidence to support that the studied
setting is the ’most relevant and applicable one’?

Response: Thanks for your comments! we realize that it is inappropriate and misleading to describe
unsupervised OD as “most relevant and applicable one”, so we have removed the corresponding statement.
In Sec. 1 of the revised manuscript (highlighted part on page 1, line 42 of left column to line 33 of right
column), we re-elaborate the importance of OD by the following new statement: “OD is of great importance
in practice: First, as data labeling is usually expensive and time-consuming, it is often required to deal
with massive unlabeled data. As a result, OD has been a frequently-encountered unsupervised task when
handling prevalent unlabeled data. Second, even for supervised/semi-supervised tasks, OD plays a vital
role in the data cleansing stage (e.g. removing wrongly-labeled data or noise when building a data set),
which is the foundation for obtaining high-quality models.”

Comment 4.2: ”We for the first time design a flexible self-supervised learning paradigm for DNN based
OD.” This is not true, there are some studies exploring this framework well before your work, e.g.,
”Deep anomaly detection using geometric transformations.” In Advances in Neural Information Processing
Systems, pp. 9758-9769. 2018.

Response: Thank you for your comments! However, we would like to clarify that the NeurIPS paper
mentioned by the reviewer [10] actually applies self-supervised learning to the (semi-supervised) anomaly
detection (AD) (also named novelty detection or one-class classification), which is an easily-confused but
different problem from the outlier detection (OD) problem discussed in this paper. Please refer to our
response to Comment 1.2 for a detailed explanation on the differences between two topics. After we
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carefully review the literature again, to our best knowledge, we are indeed the first work to explore and
design the self-supervised learning paradigm for unsupervised deep OD.

Comment 4.3: ”... generative DNNs happen to be the most frequently-used solution to unsupervised
representation learning”. This is incorrect. Many deep methods for outlier/anomaly detection are not
generative models. The authors seem to classify generic autoencoders methods as generative models, too.
This is misleading.

Response: Thank you for your comments! Based on the reviewer’s comment and the our recent literature
review (detailed in our response to Comment 2.2), we have removed this incorrect statement and replaced
it with a more accurate description of status quo (see Sec. 3.2.1 of the revised manuscript). In the
meantime, we have also revised all statement that may mislead the readers into the impression that
generic autoencoders are equivalent to generative models.

Comment 5: Why do we follow a definition in a toolbox: ”this paper follows the definition used in the
popular open source machine learning toolbox Scikit-learn [3]”? I think stronger reasons may be found.

Response: Thanks for your comments! we do agree with the reviewer that it is inappropriate to use the
definition from a toolbox, so in the revised manuscript we follow a more formal definition from the
latest survey paper on outlier detection [2], which is published on a reputable journal (see highlighted
part on page 1, left column, line 37-41 of the revised manuscript). In the original manuscript, we use
the definition from Scikit-learn because it provides a very clear differentiation between outlier detection
and anomaly/novelty detection1. However, we notice that many works in the literature simply use two
terms interchangeably, which we believe to be misleading. In our revised manuscript, we also clarify the
difference between two tasks (see page 1, right column, line 43-51 of the revised manuscript).

Comment 6: I would suggest the authors to elaborate the motivation examples in the introduction in more
details, e.g., to clarify why fully unsupervised is more applicable to these settings than semi-supervised
cases (having only normal data).

Response: Thank you for your comment! As we responded above, we have removed the misleading
statement and re-elaborated the importance of unsupervised OD by a new statement (please refer to our
response to Comment 4.1).

Comment 7: Why SSD-IF results are not found in many tables? Please clarify

Response: Thank you for your comment! In our original manuscript, we removed SSD-IF from those
tables due to the limit of page width, but the results of SSD-IF were still provided in Fig. 7 of original
manuscript. In the revised manuscript, we have re-arranged the table of main results, and results of SSD-IF
have been added back (see Table 1 of the revised manuscript).

Comment 8: Why do we need the results on inlier detection, e.g., in table 1? Please clarify.

Response: Thank you for your comment! We believe that the reviewer was referring to the metric “AUPR-
In” (“PR-I” in the revised manuscript). In fact, AUPR-In refers to the AUC of precision-recall curve when

1https://scikit-learn.org/stable/modules/outlier detection.html
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inliers are viewed as positive class, while inliers and outliers can both be viewed as the positive class when
computing the PR curve. They actually reflect the performance of detector from two different angles. Since
we do not assume preference to detecting inliers or outliers, we simply follow the standard practice in
relevant realms like OOD [3] and semi-supervised AD [10], and computes both AUPR-In and AUPR-Out
as parallel metrics for a more comprehensive evaluation.
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RESPONSES TO COMMENTS OF REVIEWER #2

Comment 1: Some technical points are not introduced and motivated in the introduction.

Comment 1.1: How to design pseudo labels and why use transformation operation types as supervision
rather than other forms of pseudo supervision? What is the underlying intuition?

Response: Thank you for your comment! In fact, using types of operations as pseudo labels is motivated by
the previous work [11], which realizes highly effective unsupervised representation learning by predicting
types of rotation. The main intuition behind this practice is that such a design forces DNN to capture
the high-level semantics (e.g. structure and texture) in a image to fulfill such a classification task. For
example, to recognize what type of rotation is imposed on the original image, the DNN must learn to
localize salient object in images and recognize the orientation of its high-level parts [11], such as the head
and legs of a human. However, it is not the only feasible way to introduce self-supervision: First, in the
revised manuscript, we also show that the pseudo supervision can be introduced by a generative learning
paradigm (see Sec. 3.6.1 of the revised manuscript) or a contrastive learning paradigm (see Sec. 3.6.2 of
the revised manuscript). Second, our experiments also show that it is plausible to use a different way to
assign pseudo labels, e.g. the multi-label way suggested by the reviewer (see the response to comment
2.1 below). Finally, as the reviewer suggests, we have added the explanation of this intuition to the end
of Sec. 3.2.2 of the revised manuscript (highlighted part on page 5, left column, line 33-46).

Comment 1.2: Why is uncertainty better than other measures like density when using inlier priority?
What is the intuition?

Response: Thank you for your comment! This is because the network uncertainty is usually directly
optimized during the training of DNN (e.g. the training process will generally increase DNN’s prediction
probability and decrease outputs’ entropy of training data), while other measures like density or proximity
are not an explicit goal of DNN optimization. Therefore, we believe that network uncertainty can be a
more direct indicator of inlier priority than other traditional measures, thus making it a very effective
outlierness measure here. As the reviewer suggests, we have added this intuition to Sec. 3.4.1 of the
revised manuscript (see highlighted part on page 7, right column, line 39-45).

Comment 2: Some studies are missing.

Comment 2.1: Since different type of transformations are used, why not juse adopt a multi-label way to
supervise the network? That is, rotation type constitutes the first label, flip or not constitutes the second
one, shifting type for the third and the forth one. The network predicts four labels for each image. This
might be a baseline to compare.

Response: Thank you for your comment! As the reviewer suggests, we have conducted experiments to
explore the possibility to use such a multi-label way for deep OD. Interestingly, the results suggest that
such a multi-label way can not only achieve reasonable OD performance, but also performs slightly better
than the original single-label way on most benchmark datasets. We have added the discussion on this
issue to Sec. 4.2.3 of the revised manuscript (see point (4) on page 14, left column).
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Comment 3: The proof in section 3.3.2 does not reflect the necessity of using the specially designed
transformation discrimination task. The conclusion seems to be invariant to the chosen of self-supervised
tasks or pseudo labels. If so, why not just use random labels and try to train a network to predict these
random labels to see if the conclusion still holds? I know a carefully designed self-supervised task might
yield good representations, but are good representations really important for outlier detection if we can
simply discriminate inliers and outliers merely from inlier priority that is uncorrelated to the way of
supervision?

Response: Thank you for your comment! We would like to respond in terms of the following aspects:
(1) In the outlier image removal task, it should be noted that the difference between outliers and inliers
lie in their semantics, e.g. high-level structure and appearance. To encourage the semantic similarity
within inliers and maximize the semantic difference between inliers and outliers, it is necessary to learn
good representations with rich semantics in the first place. In other words, a learning task that can yield
semantically meaningful representations is the foundation for inliers to be semantically similar and joint
their efforts into a priority against outliers. (2) As the reviewer suggests, we also conduct an experiment
that alternate the original pseudo labels by random labels. As we expected, DNNs trained in this way
yield very poor detection performance that is almost equal to random guess (approximately 50% AUROC)
in the experiments. Therefore, good representation learning is of paramount importance in forming inlier
priority, and we have added this explanation to the end of Sec. 3.3.4 of the revised manuscript (see
highlighted part on page 7, line 56 of left column to line 21 of right column).
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E3Outlier : A Self-supervised Framework for
Unsupervised Deep Outlier Detection

Siqi Wang, Yijie Zeng, Guang Yu, Zhen Cheng, Xinwang Liu, Sihang Zhou,
En Zhu, Marius Kloft, Jianping Yin, Qing Liao

Abstract—Existing unsupervised outlier detection (OD) solutions face a grave challenge with surging visual data like images. Although
deep neural networks (DNNs) proves successful for visual data, deep OD remains difficult due to OD’s unsupervised nature. This
paper proposes a novel framework named E3Outlier that can performs effective and end-to-end deep outlier removal. Its core idea is to
introduce self-supervision into deep OD. Specifically, our major solution is to adopt a discriminative learning paradigm that creates
multiple pseudo classes from given unlabeled data by various data operations, which enables us to apply prevalent discriminative
DNNs (e.g. ResNet) to the unsupervised OD problem. Then, with theoretical and empirical demonstration, we argue that inlier priority,
a property that encourages DNN to prioritize inliers during self-supervised learning, makes it possible to perform end-to-end OD.
Meanwhile, unlike frequently-used outlierness measures (e.g. density, proximity) in previous OD methods, we explore network
uncertainty and validate it as a highly effective outlierness measure, while two practical score refinement strategies are also designed
to improve OD performance. Finally, in addition to the discriminative learning paradigm above, we also explore the solutions that exploit
other learning paradigms (i.e. generative learning and contrastive learning) to introduce self-supervision for E3Outlier. Such
extendibility not only brings further performance gain on relatively difficult datasets, but also enables E3Outlier to be applied to other
OD applications like video abnormal event detection. Extensive experiments demonstrate that E3Outlier can considerably outperform
state-of-the-art counterparts by 10%-30% AUROC. All codes are available at https://github.com/demonzyj56/E3Outlier.

Index Terms—outlier detection, deep neural networks, unsupervised learning, self-supervised learning

F

1 INTRODUCTION

IN realms like machine learning and data science, outliers,
which are also called novelties, anomalies, deviants, ex-

ceptions, irregularities, etc [1], have a pervasive existence.
Outlier detection (OD), which may also be referred as
unsupervised anomaly/outlier detection, is a long-standing
problem that draws continuous attention from the research
community. To provide a clear and strict formulation of OD
problem, this paper follows the definition used in the recent
OD survey paper [2]: Given a set of data instances, OD is
an unsupervised task that aims to identify those instances
that deviate significantly from the rest of data. Thus, outliers
are discerned from given unlabeled data by a transductive
learning setup. OD is of great importance in practice: First,
as data labeling is usually expensive and time-consuming, it
is often required to deal with massive unlabeled data. As a
result, OD has been a frequently-encountered unsupervised
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task when handling prevalent unlabeled data. Second, even
for supervised/semi-supervised tasks, OD plays a vital role
in the data cleansing stage (e.g. removing wrongly-labeled
data or noise when building a data set), which is the founda-
tion for obtaining high-quality models. OD enjoys a variety
of real-world applications, such as financial fraud detection
[3], emerging topic detection [4], computer-aided medical
diagnosis [5], motion trajectory analysis [6], etc. Since the
only prior knowledge is that outliers have rare occurrence
when compared with inliers, no supervision information is
available for OD here. Due to its unsupervised nature, OD
is usually addressed by exploiting some intrinsic properties
of data, e.g. density, proximity, cluster membership, etc. A
more detailed review of classic OD is given in Sec. 2.1.
In particular, we distinguish OD in this paper from the
(semi-supervised) anomaly detection or one-class classification
[7], which builds a normality model from a pure set of
labeled normal data and detects deviants in a separated test
set by an inductive learning setup. To avoid any confusion, a
detailed clarification of terms is also provided in Sec. 6 of the
supplementary material, so as to differentiate OD here from
other relevant but different realms like (semi-supervised)
anomaly detection and out-of-distribution detection.

With the widespread use of photographic equipment
(e.g. cameras, smart phones), visual data like images and
videos have undergone an explosive growth in these years.
In this context, a marriage of OD and visual data is pretty
natural, and it gives birth to many novel applications,
such as the refinement of web image search results [8],
[9] and video abnormal event detection [10], [11]. Among
various forms of visual data, images have constantly played
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Unlabeled Data (Cats and Outliers)
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Fig. 1: An example of deep outlier image removal task.

a fundamental role in all sorts of visual analysis. There-
fore, this paper will focus on OD for image data, i.e. the
image outlier removal task. For an intuitive illustration,
we show an example that aims to remove outliers from
images of cats (inliers) in Fig. 1. Compared with frequently-
seen tabular data (or vectorized data), image data exhibit
evidently different characteristics: They possess a variety
of high-level spatial structures that are endowed with rich
semantics, and low-level details (i.e. image pixels) alone are
much less meaningful to perception. As a consequence, a
direct application of those classic OD methods to image
data usually leads to poor performance, and proper image
representations will be a prerequisite for successful outlier
removal. As a simple solution, some works [8], [12] extract
the image representations by hand-crafted feature descrip-
tors (e.g. SIFT [13], sparsity-constrained linear coding [14]),
and then feed the extracted feature vectors into a classic
OD method. However, such solutions bring about complex
feature engineering issues, and they often suffer from sub-
optimal image representations and poor transferability. To
this end, an emerging trend is to learn good representations
automatically via deep neural networks (DNNs) during
the learning process, so as to realize a certain goal like
image classification or segmentation. Such an end-to-end
deep learning paradigm has achieved remarkable success
in computer vision, especially with discriminative DNNs
for supervised learning tasks [15]. However, although intro-
ducing DNNs for deep outlier removal seems to be pretty
straightforward, a both effective and end-to-end DNN based
OD solution still requires exploration. The major impedi-
ment to developing such a solution lies in the unsupervised
nature of the OD task, i.e. the absence of data labels results
in a lack of supervision signal. Consequently, as several
recent surveys point out [2], [16], [17], [18], auto-encoder
(AE) still plays a dominant role in deep OD, while other
widely-used DNNs like discriminative ResNet [19] are not
directly applicable for deep OD without any given labels.

To bridge those gaps in deep OD, we propose the first
self-supervised framework termed E3Outlier, which aims to
realize both effective and end-to-end deep outlier removal.
Specifically, our core idea is to remedy the label absence
in OD by introducing self-supervision. To this end, our
major solution is to create multiple pseudo classes from
given unlabeled data by imposing certain data operations
like rotation and patch re-arranging. With labels of those
pseudo classes, powerful discriminative DNNs that have
been thoroughly studied can be exploited in OD and enable

more effective representation learning. Second, in order
to further conduct end-to-end OD, we unveil a property
named “inlier priority”: Even though inliers and outliers are
indiscriminately fed into the DNN during self-supervised
learning, the DNN tends to prioritize inliers’ loss reduction.
We provide both theoretical and empirical demonstration to
this property. Third, instead of commonly-used outlierness
measure (e.g. density and proximity), we point out that the
DNN uncertainty in self-supervised learning can be lever-
aged to design highly effective outlier scores. Meanwhile,
inspired by the inlier priority and network uncertainty,
we develop two practical strategies and fuse them into a
score refinement stage to yield performance enhancement.
Finally, in addition to the aforementioned discriminative
learning paradigm, we further design the solution to lever-
age generative/contrastive learning paradigm to perform
self-supervised learning for the proposed E3Outlier frame-
work. With the extendibility to different learning paradigms,
E3Outlier is not only able to be flexibly applied to other
OD applications like video abnormal event detection, but
also yield further performance gain on relatively difficult
datasets. Our main contributions can be summarized below:

• We for the first time design a self-supervised learning
framework for DNN based OD. It not only eases the
lack of supervision, but also enables discriminative
DNNs to be directly applied to the deep OD problem.

• We unveil a property named inlier priority during
self-supervised learning, and theoretical and empiri-
cal demonstration are presented to justify this prop-
erty. It lays the foundation to perform end-to-end OD
with the proposed E3Outlier framework.

• We point out that the uncertainty of discriminative
DNN can be exploited as a novel outlierness measure
in deep OD, and develop several highly effective
uncertainty based outlier scores for end-to-end OD.
Moreover, we propose joint score refinement with
two practical strategies to boost the OD performance.

• We further design solutions that incorporates genera-
tive learning and contrastive learning paradigm into
the E3Outlier framework to provide self-supervision,
which endows the proposed framework with more
flexibility and better OD performance.

An earlier version of this paper is reported in [20], and
this paper is mainly extended in terms of the following
aspects: (1) This paper explicitly points out that DNN un-
certainty can be used as a new outlierness measure, and in-
tuitively unveils the connection among OD, self-supervised
learning and network uncertainty. Compared with this pa-
per, [20] just reported empirical comparison of different
outlier scores and did not provide in-depth analysis into
the underlying principle of score design. (2) We design sev-
eral practical strategies to conduct outlier score refinement,
which enables the model to achieve consistent performance
enhancement against the performance reported in [20] on
all benchmark datasets. (3) Unlike [20] that only exploited
discriminative learning paradigm for deep OD, this paper
further validates the applicability of generative learning or
contrastive learning paradigm to E3Outlier. (4) Apart from
the image outlier removal task in [20], this paper shows that
the proposed E3Outlier framework is also able to achieve
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superior performance in other deep OD application like
unsupervised video abnormal event detection.

2 RELATED WORK

2.1 Shallow Model based Outlier Detection
A vast number of shallow methods have been proposed
to handle OD, and they usually fall into the following
categories: (1) Proximity based methods, which measure the
outlierness of a datum by its relation to its neighboring data.
Early methods of this type simply assume the data density
to be homogeneous, and define some intuitive quantities
as outlier scores, such as the distance to the k-th neareast
neighbors (k-nn) [21] and the number of neighbors within a
pre-defined radius [22]. To this end, Local Outlier Factor
(LoF) [23] is the first work that considers local outliers
using the average ratio of one datum’s neighbor’s local
reachability density to its own reachability density, which
inspires numerous subsequent works, e.g. Connectivity-
based Outlier Factor (CoF) [24] considers the degree of
connectivity among data when computing outlier scores,
while Local Outlier Probability (LoOP) [25] estimates the
probability of being an outlier by assuming a half-Guassian
distribution on a datum’s distance to its k-nn. As computing
k-nn can be time-consuming, recent works [26], [27] propose
to leverage subsampling and achieve linear time complexity.
(2) Statistics based methods, which view data endowed with
low likelihood as outliers. The likelihood can be estimated
by several statistical models, including parametric and non-
parametric statistical models. As to parametric models,
the most representative model is Gaussian Mixture Model
(GMM) [28], and recently a more robust GMM based OD
approach is proposed by Tang et al. [29] by incorporating
subspace learning. Meanwhile, as to non-parametric mod-
els, kernel density estimation (KDE) [30] is frequently used
for OD, while and its its recent variants like [31], [32], [33]
are developed to improve its efficiency of OD. (3) Clustering
based methods, which view data that do not belong to
any major data cluster as outliers. For example, Jiang et
al. [34] perform OD by a modified k-means algorithm and
constructing a minimal spanning tree from cluster centers.
He et al. [35] combine LoF and clustering into CBLOF,
which quantitatively distinguishes small and large clusters.
To avoid specifying the number of clusters, a recent work
by Yan et al. [36] propose to leverage Gibbs Sampling of
Dirichlet Process Multinomial Mixture (GSDPMM) for OD.
Chenaghlou et al. [37] extends the clustering based OD to
online streaming data by considering the evolve of clusters.
(4) Projection based methods, which project the original
data into a new space to manifest outlierness. Concretely,
data can be projected into a low-dimensional embedding by
dimension reduction techniques like principal component
analysis (PCA) [38] or neural networks like shallow autoen-
coders [39], and outliers are viewed to be those data that are
poorly recovered from the embeddings. In particular, Liu et
al. [40] propose Isolation Forest (IF), which projects input
data into the tree nodes of random binary trees, and then
discriminate outliers by the depth of tree nodes. IF proves
to be a both effective and efficient OD method, while recent
works by Hariri [41] propose to further improve IF by using
random hyperplane cut. Besides, projection techniques like

local sensitivity hashing [42] and random projection [43] are
also used to reduce complexity of OD models. A more com-
prehensive review on shallow OD methods can be found in
recent survey papers [2], [16], [17], [18]

2.2 DNN based Outlier Detection
As a newly-emerging topic, DNN based OD is highly chal-
lenging as it requires to learn suitable data representations
for OD. To our best knowledge, only few attempts have
been made in the literature. A straightforward idea is to
exploit a two-stage solution, which performs representation
learning by DNNs first, and then feeds learned features into
a separated module that is implemented by some classic
OD model (reviewed in [44]). However, such two-stage
approaches may suffer from the incompatibility between
learned features and the OD module, which can lead to sub-
optimal performance. By contrast, state-of-the-art methods
usually conduct a joint learning of data representations
and outlier scores, and we review each existing solution
to our best knowledge below: Xia et al. [9] design a new
loss function that encourages a better separation of inliers
and outliers by minimizing intra-class variance for multi-
layer AE, and propose an adaptive thresholding technique
to discriminate outliers; Zhai et al. [45] connect an energy
based model with a regularized AE, and develop an energy
based score for OD; Zhou et al. [46] utilize a combination
of deep AE and Robust Principal Component Analysis
(RPCA), which decomposes the matrice of unlabeled data
into a low-rank part and a sparse part to represent inliers
and outliers respectively, while Chalapathy et al. [47] also
adopt a similar idea; Chen et al. [39] propose to generate
a set of AEs that possess randomly varied connectivity
architecture to perform OD, while adaptive sampling is
leveraged to make the approach more efficient and effective.
Inspired by Gaussian Mixture Model (GMM), Zong et al.
[48] focus on developing an end-to-end OD solution that
embeds a GMM density estimation network into the deep
AE, and both components are optimized simultaneously;
Unlike other methods that rely on AEs, Pang et al. [49] pro-
pose a ranking-model based framework named RAMODO,
which can be readily incorporated into random distance
based OD approach to perform efficient OD with tabular
data; Liu et al. [50] convert OD into a binary classification
problem via generative adversarial networks (GANs) [51],
which are modified to generate simulated outliers; The most
recent work [52] exploits the latent low-dimensional sub-
space structure in data by adding a Robust Subspace Recov-
ery (RSR) regularizer into AE, and two variants, RSRAE and
RSRAE+, are proposed for deep outlier removal. As several
recent surveys point out [2], [17], [18], AE still plays a center
role in existing deep OD solutions due to its unsupervised
nature, which motivates us to develop E3Outlier.

2.3 Self-supervised Learning and Network Uncertainty
Self-supervised learning, which is also known as surrogate
supervision [53] based learning or pseudo supervision [54]
based learning, enjoys a swift growth of popularity in recent
research. Its core idea is to construct additional supervision
signals from given data by introducing a pretext task. The
learning targets of pretext task can be obtained by numerous
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ways, such as clustering [55], geometric transformations
[56], [57], masking [58], image patch permutation [59], time
sequence shuffling [60], contrastive learning [61], etc. As a
highly effective pre-training technique or auxiliary task to
improve the performance of high-level downstream tasks,
self-supervised learning has been explored in many ap-
plication scenarios, such as image classification, semantic
segmentation, object detection and action recognition [62].
To our best knowledge, this is the first work that connects
self-supervised learning to unsupervised outlier analysis.

DNN’s uncertainty reflects its confidence to a certain
prediction, which usually makes it a concept for inductive
learning. Several methods have been proposed to quantify
network uncertainty, such as Bayesian Neural Networks
(BNN) [63], Monte Carlo dropout (MC-Dropout) [64], model
ensemble [65], maximum softmax probability [66], informa-
tion entropy [67], etc. Despite that network uncertainty has
drawn increasing attention, its application is typically lim-
ited to knowing whether DNN makes trustworthy predic-
tions or detecting the dataset shift. In this paper, we for the
first time discuss network uncertainty under a transductive
setup, and demonstrate that it can serve as a fairly effective
outlierness measure for DNN based OD.

3 THE PROPOSED FRAMEWORK

3.1 Problem Formulation
Suppose that the data space spanned by all images is
denoted by X . DNN based OD deals with a completely
unlabeled image data collectionX ⊆ X that is contaminated
by outlier images. In other words, X consists of an inlier
set Xin and an outlier set Xout, while X = Xin ∪ Xout

and Xin ∩ Xout = ∅. By the definition of outliers [68],
image data of the inlier set are from the same underlying
distribution that shares close semantics, but outliers origi-
nate from different distributions. Given any image x ∈ X ,
DNN based OD intends to build a scoring model S(·), which
takes raw x as the input and does not perform any prior
feature extraction. The goal of S(·) is to output S(x) = 1
for any inlier x ∈ Xin, while S(x) = 0 for any outlier
x ∈ Xout. In practice, a larger output S(x) signifies a lower
likelihood to be an outlier for x. Besides, within the domain
of DNN based OD, end-to-end OD refers to the case where
both representation learning and OD can be carried out by
the same DNN, and no separated classic OD method is
involved. In this paper, the proposed E3Outlier framework
aims to achieve both effective and end-to-end OD.

3.2 Discriminative E3Outlier
3.2.1 Motivation
As reviewed in Sec. 2.2, it is noted that AE based solutions
play a center role in the deep OD task due to its unsuper-
vised setup. Specifically, deep AE based solutions typically
perform unsupervised representation learning by learning
to reconstruct the inputs, which is realized by training the
deep AE to reduce pixel-wise reconstruction errors like
mean square errors (MSE). However, recent researches like
[69], [70] demonstrate that such a pixel-wise reconstruction
tends to overemphasize low-level image details, which are
of very limited interest to human perception. By contrast,

semantics of high-level image structures are ignored, but
they are actually pivotal to DNN based OD. Another emerg-
ing type of generative DNNs is GANs. Despite of fruitful
progress, it is still challenging to integrate them into OD
[71]: First, it is actually difficult to generate sufficient real-
istic image outliers, as potential image outliers are infinite
and generating high-quality image outliers by GANs is still
an open topic; Second, efficient representation learning with
GANs is neither straightforward nor easy. By comparison,
the supervised discriminative learning paradigm is still the
most effective way to learn image semantics and capture
high-level structures so far. As a result, these reasons above
motivate us to introduce self-supervision, so as to enable the
use of discriminative learning paradigm in OD.

3.2.2 Self-supervised Discriminative Network (SSD)
The availablity of supervision signals is the key to introduce
discriminative DNNs like ResNet [19] and Wide ResNet
(WRN) [72] to OD. As image classification is the most
fundamental task in supervised learning, creating several
pseudo classes from given unlabeled data is a natural idea.
Instead of generating a pseudo outlier class like [50], which
is a straightforward but difficult task, we propose to build
self-supervision by exerting some frequently-seen data op-
erations on given images. Those new data produced by a
certain operation are viewed as one pseudo class. After-
wards, we can readily realize representation learning with a
discriminative DNN by training it to classify those created
pseudo classes. As the discriminative DNN is guided by
self-supervision, we term it self-supervised discriminative net-
work (SSD) here. Formally, supposing a set of K operations
O = {O(·|y)}Ky=1 is designed to create pseudo classes, we
impose the y-th operation O(·|y) on an unlabeled image
x (regardless of an inlier or outlier) and produce a new
image x(y) = O(x|y). In this way, we can create the y-
th pseudo class X(y) = {x(y)|x ∈ X}, with the pseudo
label y assigned to all data in this class. Then, given all data
X ′ = {X(1), · · · , X(K)} and their label set Y , an SSD with
a K-node Softmax layer is trained to perform classification.
Like the standard classification process, the SSD is supposed
to classify a datum x(y′) into the y′-th pseudo class. The
probability vector of x(y′) output by SSD’s Softmax layer is
denoted as P(x(y′)|θ) = [P (y)(x(y′)|θ)]Ky=1, where P (y)(·)
and θ indicate the probability from the y-th node of Softmax
layer and DNN’s leanable parameters respectively. To train
the SSD, we can minimize the following objective function:

LSSD =
1

N

N∑
i=1

LSS(xi|θ) (1)

where LSS(xi|θ) represents the loss incurred by xi in X
during the self-supervised learning. When the standard
cross-entropy loss is used, LSS(xi|θ) takes the form below:

LDSS(xi|θ) = −
1

K

K∑
y=1

log(P (y)(x
(y)
i |θ)) (2)

Another key to SSD is the design of data operation. We
introduce three sets of operations: Regular affine operation
set ORA, irregular affine operation set OIA and patch re-
arranging operation set OPR. The general intuition behind
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Irregular Affine Transformation

Patch Re-arranging

Inliers
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Unlabelled Data with
both Inliers/Outliers Operations for Self-supervision

Network Uncertainty 
based Outlier Scores

Self-supervised Learning with
Discriminative DNN

Data of Multiple Pseudo Classes

Pseudo Class Probabilities

Reweighting

Ensemble

Score Refinement

Fig. 2: Overview of the proposed discriminative E3Outlier for deep OD.: Given unlabeled image data polluted by outliers,
three operation sets are first imposed on images to create multiple pseudo classes and provide self-supervision. Then, a
discriminative DNN is trained to perform the self-supervised learning, i.e. learning to classify those created pseudo classes.
Next, the outlierness of each image is measured by the proposed network uncertainty based outlier score. Finally, the joint
score refinement with re-weighting and ensemble strategy can be used to further boost the OD performance of E3Outlier.
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Fig. 3: Comparison of learned image representations.

those operations is to force DNN to capture the semantics of
high-level structures in an image when it is required to fulfill
such a classification task. For example, to recognize what
type of rotation is imposed on the original image, the DNN
must learn to localize salient object in images and recognize
the orientation of its high-level parts, such as the head and
legs of a human. Due to the page limit, we illustrate the de-
tails of data operation design in Sec. 1 of the supplementary
material. Due to the prevalence of discriminative DNNs,
creating pseudo classes by data operations is an intuitive
and convenient way to provide self-supervision for deep
OD. The overview of discriminative E3Outlier is presented
in Fig. 2. However, we will show other learning paradigms
are also applicable to the proposed E3Outlier later.

3.2.3 Comparison between SSD and AE
To verify whether SSD can learn better image representa-
tions, we conduct a simple experiment that compares SSD
with Convolutional AE (CAE). We select WRN-28-10 [72]
as SSD and adopt the CAE architecture in [57], which has
a close depth to the SSD.Then, we extract the outputs of
SSD’s penultimate layer as learned representations, while
the outputs of CAE’s intermediate layer are extracted for
comparison (note that they share the same dimension).
With the protocol described in Sec. 4.1 to evaluate the OD
performance on image datasets, learned representations of
SSD and CAE are both fed into an Isolation Forest (IF)

model with the same parameterization to conduct OD. The
comparison is shown in Fig. 3: On those image benchmarks,
learned representations of SSD are always able to improve
IF’s OD performance, which justifies SSD’s effectiveness.

3.3 Inlier Priority: Foundation of End-to-end OD
3.3.1 Motivation
Although the proposed SSD achieves more effective rep-
resentation learning than CAE, there are still some prob-
lems: First, without using a specialized OD network like
[48], the proposed paradigm actually learns a pre-text task
(i.e. classification) instead of OD, so by now we cannot
draw OD results directly from SSD alone; Second, although
we can resort to a classic OD model like we did in Sec.
3.2.3, such a two-stage solution can be sub-optimal as
learned representations and the OD model are not jointly
optimized. In fact, the OD performance of SSD+IF solu-
tion in Sec. 3.2.3 indeed has room for improvement (60%-
70% AUROC) on relatively difficult benchmarks, i.e. CI-
FAR10/SVHN/CIFAR100. Therefore, an end-to-end solu-
tion is favorable for deep OD. However, for the proposed
SSD, data operations are equally imposed on both inliers
and outliers to create a pseudo class, and they are indiscrim-
inately fed into DNN for training. Thus, it is still not sure
whether inliers and outliers will behave differently during
the self-supervised learning. This motivates us to explore
this issue below from both theoretical and empirical view.

3.3.2 The Theoretical View
First of all, we approach this issue from a theoretical view.
Since the theoretical analysis of DNNs remains particularly
difficult, we consider a simplified case that is analyzable:
We choose a feed-forward network with a single hidden
layer and sigmoid activation to be SSD. Suppose that the
hidden layer and Softmax layer have (L + 1) and K
nodes respectively. Parameters of the simple SSD is ran-
domly initialized by an i.i.d uniform distribution on [−1, 1].
Since neural networks are usually optimized by gradient
descent, the influence of inliers and outliers imposed on
the SSD can be reflected by the gradients that they back-
propagate to update the network parameters. Hence, we
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Fig. 4: An illustration of de facto update and the average de facto update of inliers/outliers during the network training. The
class used as inliers is in brackets.

analyze gradients w.r.t the weights associated with the c-
th class (1 ≤ c ≤ K) between the hidden layer (it is also
the penultimate layer in this case) and the final Softmax
layer, wc = [ws,c]

(L+1)
s=1 (wL+1,c is the bias), which are di-

rectly responsible for making SSD’s predictions. We discuss
the case of iniers (Xin) first: For the cross-entropy loss
L that is used in our case, only those data yielded by
imposing the c-th operation on Xin are used to update wc,
i.e. X(c)

in = {x(c) = O(x|c)|x ∈ Xin}. The gradient vector
incurred by X(c)

in is denoted by ∇wcL = [∇ws,cL]
(L+1)
s=1 , and

each element of ∇ws,cL is given by:

∇ws,cL =

Nin∑
i=1

∇ws,cL(xi) =

Nin∑
i=1

(P (c)(xi)− 1)h(s)(xi) (3)

where Nin = |X(c)
in | = |Xin| is the number of inliers. For

xi ∈ X(c)
in , P (c)(xi) is the output of c-th node in the Softmax

layer, and h(s)(xi) is the output of s-th node in the penul-
timate layer. To quantify inliers’ influence on a randomly
initialized SSD, a direct indicator can be the expectation of
inliers’ gradient magnitude to update wc, E(in)(||∇wc

L||22).
Thus, our goal is to obtain:

E(in)(||∇wcL||
2
2) = E

( L+1∑
s=1

(∇ws,cL)
2) = L+1∑

s=1

E
(
(∇ws,cL)

2)
(4)

By addition in (3), computing (4) requires the term below:

E
(
(∇ws,cL)

2) = E
(
(

Nin∑
i=1

∇ws,cL(xi))
2)

=

Nin∑
i=1

Nin∑
j=1

E(∇ws,cL(xi)∇ws,cL(xj))

(5)

To compute (5), in our case we can resort to the second-order
Taylor series expansion to derive the approximation below
(detailed in Sec. 2 of the supplementary material):

E(∇ws,cL(xi)∇ws,cL(xj)) ≈

h(s)(xi)h
(s)(xj)

[ (K − 1)2

K2
+
K − 1

3K3

L+1∑
t=1

h(t)(xi)h
(t)(xj)

] (6)

There remains to calculate h(t)(xi)h
(t)(xj) in (6). In

this case, [73, Lemma 3.b] has proved that the expec-
tation of h(s)(xi)h

(s)(xj) w.r.t the randomly initialized

weights between the input and hidden layer satisfies
E(h(s)(xi)h

(s)(xj)) ≈ 1
4 and E(h(s)(xi)

2h(s)(xj)
2) ≈ 1

16 .
Thus, by definition of ||∇wcL||22 in (4) and (5), we yield:

E(in)(||∇wcL||
2
2) ≈ N2

in

[
(L+ 1)(

(K − 1)2

4K2
+

(K − 1)(L+ 1)

48K3
)
]

, N2
in ·Q

(7)
Since L,K above are both fixed, Q is a constant. As a
result, (7) shows that for the self-supervised learning of
SSD, E(in)(||∇wc

L||22) is roughly proportional to N2
in. Like-

wise, we can also derive that the expectation of outliers’
gradient magnitude is E(out)(||∇wc

L||22) = N2
out · Q. Since

Nin � Nout is a indispensable premise for the OD task, we
have E(in)(||∇wc

L||22) � E(out)(||∇wc
L||22), which leads

to an interesting conclusion: Although inliers and outliers
are equally used for the self-supervised learning of SSD,
the gradients contributed by inliers are much more impor-
tant than outliers. Since those back-propagated gradients
are used to train SSD, the theoretical analysis leads to an
underlying property: SSD is inclined to prioritize inliers during
self-supervised learning, which is named inlier priority in this
paper. Such a property implies that inliers and outliers
behave differently in self-supervised learning, which makes
it possible to establish an end-to-end OD solution. Since
it is intractable to compute E(h(t)(xi)h

(t)(xj)) for more
complex SSD, we will further validate inlier priority by
empirical validations in the next section.

3.3.3 Empirical Validations

To further validate the property of inlier priority empirically,
we propose to calculate a more direct indicator named
“de facto update” for inliers and outliers respectively: In
addition to gradient magnitude that we have considered in
previous theoretical analysis, another important attribute of
gradient vectors is gradient direction. As illustrated by Fig.
4a, consider xi from a batch of dataX (we slightly abuse the
notation of X here). The negative gradient −∇θL(xi) is the
fastest network updating direction to reduce xi’s loss. How-
ever, the network weights θ are actually updated by the av-
eraged negative gradient of the entire batchX ,−∇θL(X) =
− 1

N

∑
i∇θL(xi). Thus, the actual updating direction at

each iteration is usually different from the best updating
direction for each individual datum. To measure the actual
gradient magnitude that xi obtains along its best direction
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Fig. 5: Normalized histograms of inliers/outliers’ Sgtp(x). The class used as inliers is in brackets.

for loss reduction from−∇θL(X), we introduce the concept
de facto update, which is computed by projecting ∇θL(X)

onto the direction of ∇θL(xi): di = ∇θL(X) · ∇θL(xi)
||∇θL(xi)|| .

For example, as shown in Fig. 4a, the de facto update d1
and d2 reflect how much effort the network will devote to
reduce the training loss of x1 and x2 respectively. De facto
update can be viewed as an even more direct indicator of
data’s priority during training. In our case, we still take the
gradients w.r.t. the weights between SSD’s penultimate and
softmax layer as an example. Under the setup in Sec. 4.1, we
calculate the average de facto update for inliers and outliers
respectively, and visualize typical results of de facto update
on several image benchmarks in Fig. 4b-4d: As can be seen
from the results, despite being close at the beginning, the
average de facto update of inliers becomes evidently higher
than outliers as the training continues, which justifies that
SSD will bias towards inliers’ best updating directions.

3.3.4 Baseline Outlier Score and Additional Remarks
Having illustrated inlier priority both theoretically and em-
pirically, it can be expected that inliers are likely to achieve
better training performance than outliers on a SSD after the
self-supervised learning. In other words, SSD will prioritize
reducing inliers’ loss, which suggests that it is possible to
discriminate outliers directly by each datum’s loss value
after training. To be more specific, for an image x(y), we
note that the calculation of its cross entropy loss only de-
pends on its ground truth class probability P (y)(x(y)|θ) that
corresponds to its pseudo class label y. Thus, we propose
Ground Truth Probability (GTP) score Sgtp(x) that averages
P (y)(x(y)|θ) for all K operations to measure outlierness:

Sgtp(x) =
1

K

K∑
y=1

1>y ·P(x(y)|θ) = 1

K

K∑
y=1

P (y)(x(y)|θ) (8)

where 1y denotes the one-hot vector with the y-th element
to be 1. To validate whether GTP score is a plausible way
to measure outlierness, we calculate the Sgtp(x) on image
benchmarks and visualize the accumulated histograms for
inliers and outliers respectively (note that histograms are
normalized for better visualization). Representative results
are shown in Fig. 5a-5d, and the score distributions of inliers
and outliers are observed to be readily separable. Thus, GTP
score can be a feasible baseline score for end-to-end OD.
In addition, we would also like to point out the relation
between inlier priority and representation learning: In deep
OD task like outlier image removal, the difference between

outliers and inliers lie in their semantics, e.g. high-level
structure and appearance. To encourage the semantic sim-
ilarity within inliers and maximize the semantic difference
between inliers and outliers, it is necessary to learn good
representations with rich semantics in the first place. Thus,
a learning task that can yield semantically meaningful rep-
resentations is the foundation for inliers to be semantically
similar and joint their efforts into a priority against outliers.

3.4 Network Uncertainty As an Outlierness Measure

3.4.1 Motivation
SSD+GTP score provides a baseline end-to-end OD solution.
However, it is imperfect and still has room for improvement,
especially considering that the proposed self-supervised
learning is not as precise as the classic supervised learning
with human annotations: The data operation sometimes
may not be able to transform the original image into an
actual new one, e.g. a digit “8” is still itself after flipping is
performed. Therefore, labels assigned to pseudo classes can
be inaccurate. Since the calculation of GTP score in (8) relies
on the pseudo class label y, such inaccurate labeling may
undermine the GTP score’s effectiveness to discriminate
outliers. Motivated by this problem, we intend to design
a new outlierness measure that is independent of pseudo
class labels, so as to exploit the possibility to further improve
end-to-end OD performance. Besides, when compared with
other outlierness measures like density or proximity, un-
certainty is usually directly optimized during the training
of DNN, while other measures are not an explicit goal
of the optimization. Therefore, we believe that network
uncertainty can be a more direct indicator of inlier priority
than other traditional measures. To this end, network uncer-
tainty comes into our sight, since it is exactly an orthogonal
attribute to DNN’s classification accuracy [74]. As previous
works basically discuss this concept in the context of DNN’s
prediction confidence, it is interesting to explore whether
network uncertainty can be used for end-to-end OD.

3.4.2 A Demonstration Experiment
We carry out a simple demonstration experiment to shed
light on this issue. For visualization, we generate 2D data
with different degree of outlierness (detailed in Sec. 3 in
supplementary material): The generated data (dots in Fig. 6)
exhibit a larger dispersion as their coordinate on x-axis, xi,
gets more distant from the origin of x-axis, which enables
data on two ends to show larger outlierness. To calculate
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Fig. 6: The uncertainty of a regression network.

network uncertainty, we introduce a regression task that
predicts y-axis coordinate yi by corresponding xi. Note
that the regression task can be viewed as a self-supervised
learning task, since we actually intend to infer the missing
coordinate yi by the incomplete data x̃i = [xi] like the
masking mechanism [58]. The regression task is performed
by training a simple neural network with the generated 2D
data, and we estimate the uncertainty of neural network by
the popular MC-Dropout method [64]. As it is shown in
Fig. 6, it is easy to discover that the network uncertainty
(highlighted orange region) is positively correlated to the
outlierness of data. In other words, the experiment demon-
strates some interesting connections among network uncer-
tainty, OD and self-supervised learning: The uncertainty of a
neural network, which is trained to accomplish a self-supervised
learning task (not OD itself), actually serves as a fairly effective
way to measure data’s outlierness. Besides, it is also worth
noting that network uncertainty is not relevant to the label
yi. This facilitates it to be more robust to label noises in self-
supervised learning, just as we discussed in Sec. 3.4.1.

3.4.3 Network Uncertainty based Outlier Scores
As reviewed in Sec. 2.3, the uncertainty of DNN can
be estimated by several ways, which can be categorized
into Bayesian methods and non-Bayesian methods. Since
Bayesian methods are usually more complicated and require
more modifications to DNN itself, we focus on non-Bayesian
methods when designing outlier scores. The following net-
work uncertainty based scores are designed: (1) Maximum
Probability (MP) score Smp(x). Smp(x) utilizes the maxi-
mum probability (i.e. prediction probability) output by the
Softmax layer of SSD, which has proved to be a simple but
strong baseline for uncertainty estimation [66], [67]:

Smp(x) =
1

K

K∑
y=1

maxP(x(y)|θ) = 1

K

K∑
y=1

max
t
P (t)(x(y)|θ) (9)

(2) MC-Dropout (MCD) score Smcd(x). MC-Dropout keeps
the dropout layers functional during inference, and calcu-
lates the first and second-order moment of DNN’s outputs
by several forward passes [64]. Since the maximum output
probability and variance in DNN’s outputs are both able to
reflect DNN’s uncertainty, we devise Smcd(x) as follows, so

as to adapt it to OD task (Mean(·) and V ar(·) refers to the
mean and variance of multiple forward passes):

Smcd(x) =
1

K

K∑
y=1

−V ar(maxP(x(y)|θ)) +Mean(maxP(x(y)|θ))

(10)
(3) Negative Entropy (NE) based score Sne(x). Information
entropy (i.e. Shannon entropy) has constantly been used
for measuring information and uncertainty embedded in
data. Thus, we design Sne(x) to be computing the negative
entropy of SSD’s output probability distribution P(x(y)|θ):

Sne(x) =
1

K

K∑
y=1

K∑
t=1

P (t)(x(y)|θ) log(P (t)(x(y)|θ)) (11)

In addition to scores above, other network uncertainty based
scores can also be explored. Our later evaluations show that
network uncertainty based scores typically work better than
the baseline outlier score Sgtp.

3.5 Score Refinement of Discriminative E3Outlier
3.5.1 Motivation
Although components presented above have constituted a
fully-functional end-to-end OD solution, it is still possible
to improve discriminative E3Outlier’s performance. As we
have demonstrated how inlier priority and network uncer-
tainty enable end-to-end OD, they should also be considered
as the origin for performance improvement. Intuitively, a
better OD performance essentially suggests that the priority
of inliers is magnified, while it can also be accomplished by
better uncertainty estimation. Inspired by such instincts, we
propose two types of strategies to refine outlier scores.

3.5.2 Re-weighting Strategy
Our first instinct is to make SSD further prioritize inliers
during training. Nevertheless, it is noted that inliers and
outliers are indiscriminately fed into SSD at the very begin-
ning of training, i.e. inliers and outliers are equally weighted
by 1. Having revealed the role of inlier priority in OD, it
is undoubted that this default initialization is not optimal:
We can assign inliers with larger weights right before the
beginning of SSD’s training, which justifies the introduction
of a re-weighting scheme. Since given data are completely
unlabeled in OD, how and when to re-weight those unla-
beled data for OD are key issues that we have to answer. As
to how to re-weight, our solution is to utilize scores yielded
by the proposed outlierness measure as weights, which have
already achieved far better OD performance than existing
methods. To be more specific, we can normalize scores into
non-negative weights w1, · · ·wN that satisfy

∑N
i=1 wi = 1,

and modify the objective function in (1) into the form below:

min
θ

N∑
i=1

wiLSS(xi|θ) (12)

As for when to re-weight, since scores are only accessible
after self-supervised learning begins, we can perform re-
weighting during or after SSD’s training. Accordingly, we
propose online re-weighting and reboot re-weighting strat-
egy: Online re-weighting strategy will update the weights
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at the end of every epoch, and only one SSD is trained.
By contrast, reboot re-weighting trains two SSD models:
The first SSD is trained by a standard procedure, while the
scores yielded by the first SSD are used as fixed weights
to train the second SSD. The full algorithms are detailed in
Algorithm 1 and Algorithm 2 in Sec. 4 of supplementary
material. Our evaluations show that both algorithms can
improve E3Outlier’s performance.

3.5.3 Ensemble Strategy
In addition to the re-weighting strategy, another instinct is to
improve uncertainty estimation for better OD performance.
Since a generic strategy that can be easily embedded into
the model is always preferred, we introduce the ensemble
strategy into the score refinement stage. Ensemble is a
widely-used technique in machine learning that combines
multiple models into a stronger one. It is shown to be a
powerful tool to improve the predictive performance [75],
and recent works also demonstrate that an ensemble of
DNNs can be highly efficient for producing good model
uncertainty estimates [65], [67]. Specifically, we first cre-
ate multiple SSD models M1, · · · ,Me in a certain way,
where e > 1 is the number of SSD models. For exam-
ple, we can initialize SSD models with different random
seeds, or adopt several different network architectures as
different SSD models. After self-supervised learning, we
simply average the outputs of different SSD models by
P̄(x

(y)
i |θ) = 1

e

∑e
j=1 Pj(x

(y)
i |θ), where Pj(x

(y)
i |θ) is the

outputs of jth SSD model. Afterwards, we can calculate any
network uncertainty based score with P̄(x

(y)
i |θ). Note that

the ensemble process can be readily paralleled for potential
acceleration. Our later empirical evaluations show that such
simple ensemble technique almost consistently improves
the OD performance when compared with the case where
a single SSD model is used.

3.5.4 Joint Score Refinement
Two aforementioned strategies are both able to yield better
outlier scores, but it should be noted that they actually refine
outlier scores from different views: The re-weighting strat-
egy strengthens the inlier priority during self-supervised
learning, while the ensemble strategy aims to improve the
estimation of network uncertainty. In other words, two
strategies exploit non-overlapping facets for score refine-
ment. Thus, using a joint strategy of the re-weighting and
ensemble to achieve even better OD performance is natural.
In this paper, we devise the final score refinement stage
by combining the reboot re-weighting strategy with the
ensemble strategy (shown in Algorithm 3 in Sec. 4 of the
supplementary material). Note that this is not the only
form to combine re-weighting and ensemble, e.g. combining
online re-weighting with the ensemble is also possible.

3.6 Other Learning Paradigms for E3Outlier
In previous sections, we have demonstrated the way to
leverage discriminative self-supervised learning to perform
deep OD. As the way to introduce self-supervision is not
limited to the discriminative learning paradigm, it is natural
for us to explore other learning paradigms for E3Outlier,
which brings two benefits: First, more available learning

paradigms enable E3Outlier to be more flexible when deal-
ing with different application scenarios. Second, emerging
self-supervised learning paradigms like contrastive learning
also facilitate E3Outlier to further exploit its potential for
deep OD. Thus, this section will detail our solution to apply
generative and contrastive learning paradigms to E3Outlier.

3.6.1 Generative E3Outlier
Generative learning paradigm is not new, because AE based
reconstruction is exactly the most frequently-used method
in existing deep OD solutions so far. However, as illustrated
in Sec. 3.2.3, existing generative solutions often perform
unsatisfactorily. As self-supervision is shown to be surpris-
ingly effective in discriminative E3Outlier, it is instinctive
for us to explore whether self-supervision can also improve the
performance of generative deep OD. Specifically, our solution
is to add richer self-supervision information into the gener-
ation process to avoid simple reconstruction of the inputs.
Inspired by the fact that data operations can provide rich
self-supervision signal in SSD, we propose the generative
self-supervised learning (GSS) paradigm below: Consider a
data operation set with Kg operations Og = {Og(·|y)}Kg

y=1.
The data operations in Og can be defined by various ways,
such as certain transformations or fetching a specific part
or modality of the input data. Then, we draw two different
operations Og(·|y1) and Og(·|y2) from Og . Given an input
data x, two operations are required to satisfy:

Og(x|y1) 6= Og(x|y2), y1 6= y2 (13)

Then, a generative DNN G (e.g. AE, UNet [76] or GANs) is
trained to generate Og(x|y2) by taking Og(x|y1) as the in-
put, which is equivalent to minimizing the objective below:

LGSS(y1, y2) =
1

N

N∑
i=1

||G(Og(xi|y1))−Og(xi|y2)||22 (14)

It is easy to note that when Eq. (13) is not satisfied, Eq. (14)
will degrade into plain reconstruction. When G has been
trained, one can simply obtain an outlier score of x based
on the MSE loss of generation:

Sg(x|y1, y2) = −||G(Og(x|y1))−Og(x|y2)||22 (15)

Since there exist different ways to select operations, it is
natural to train the model and compute final outlier score
by a combination of different y1, y2 configurations:

LGSS =
∑
y1

∑
y2

LGSS(y1, y2),

Sg(x) =
∑
y1

∑
y2

Sg(x|y1, y2)
(16)

Compared with the plain reconstruction adopted by AE
based deep OD methods, the key to our generative E3Outlier
is to make DNN generate a different datum obtained by
a non-identical operation, which makes the learning task
more challenging for DNNs. This not only avoids the
DNN to simply memorize the low-level details, but also
encourages the DNN to consider high-level semantics by
learning the correlations of two different data, which can be
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viewed as valuable self-supervision information. Our later
evaluations show that generative E3Outlier can produce
tangible performance improvement when it shares the same
generative DNN with other reconstruction based deep OD
solutions. More importantly, generative E3Outlier can be
readily applied to some important scenarios where the input
data can be decomposed into multiple views or modalities.
For example, video data are usually considered from the
view of both appearance and motion. In those cases, the
correspondence between different data views/modalities
is valuable self-supervision signal in itself, and generative
E3Outlier provides a convenient and straightforward way to
exploit such semantics. As a demonstration, we will show
how to design a new unsupervised video abnormal event
detection solution by generative E3Outlier in Sec. 4.3.2.

3.6.2 Contrastive E3Outlier

It is easy to notice that the performance of current deep OD
solutions, including the proposed discriminative E3Outlier,
suffers from evidently inferior performance on colored im-
age datasets (e.g. CIFAR10) when compared with compara-
tively simple gray-scale image datasets (e.g. MNIST). Mean-
while, we also note that color based operations (e.g. color
jittering and RGB-to-gray transformation) play an important
role in many vision tasks. To further exploit color informa-
tion and enhance the capability to handle more ubiquitous
colored images in practical applications, we leverage the
emerging contrastive learning paradigm, which is shown to
be highly effective in unsupervised representation learning
of real-world colored images, to provide self-supervision in
deep OD and design contrastive E3Outlier. The core idea of
contrastive learning is to learn meaningful representations
by making DNNs compare a pair of data drawn from the
unlabeled dataset. We choose one of the most representative
contrastive learning method, SimCLR [77], as the founda-
tion for the proposed contrastive E3Outlier. Specifically, a
contrastive loss for a datum x is defined as follows:

Lcl(x, X
+, X−) =

− 1

|X+| log
∑

x′∈X+ exp(sim(z(x), z(x′))/τ)∑
x′∈X+∪X− exp(sim(z(x), z(x′))/τ)

(17)

where X+/X− denote the set with data that can form a
positive/negative pair with x, and sim(·, ·) is a similarity
measure like cosine similarity. | · | is the cardinality of the
set, and z(x) is the projection yielded by feeding DNN’s
learned representation f(x) into a projection layer g(·):
z(x) = g(f(x)). τ is a hyperparameter. Next, the issue
is to construct positive and negative data pairs to enable
the calculation of Eq. (17). To this end, we introduce a
random augmentation set A, which contains augmentation
operations that is composed of color jittering, RGB-to-gray
transformation and image crop with random parameteri-
zation. Each time two independent random augmentation
A1 and A2 are drawn from A. After that, the data pair of
augmented data A1(x) and A2(x) are viewed as a positive
pair, while any other pair is viewed as negative. The goal of
contrastive loss defined in Eq. (17) is to yield similar repre-
sentations for a positive data pair, and make representations
of a negative pair dissimilar. Given a mini-batch data set

B drawn from the unlabeled dataset, SimCLR defined the
following training objective to perform contrastive learning:

Lscl(B,A1, A2) =
1

2|B|

|B|∑
i=1

(Lcl(A1(xi), {A2(xi)}, B̂−i)+

Lcl(A2(xi), {A1(xi)}, B̂−i))

(18)

where we define B̂−i = {A1(xj)}j 6=i ∪ {A2(xj)}j 6=i. Some
recent works [77], [78] point out that some data operations
(e.g. 90 degree rotation) can be used to generate negative
pairs as they produce very different data from the original
one. This is also verified in discriminative E3Outlier, since
those data operations are often likely to produce pseudo
classes that are readily separable. Following such an ob-
servation, we collect an operation set Oc = {Oc(·|y)}Kc

y=1

with Kc operations (including one identity transformation),
and expand the mini-batch B into B′ = Oc(B|1) ∪ · · · ∪
Oc(B|Kc), where the data set Oc(B|y) = {Oc(x|y)|x ∈ B}.
Since B′ can be viewed as a data set with Kc pseudo
classes and discriminative E3Outlier works well in deep
OD, we substitute B by B′ into Eq. (18) for training, and
make DNN learn to classify those pseudo classes by an
additional discriminative module and the cross-entropy loss
Lcls(B

′), so as to produce more meaningful representations.
In this way, the contrastive self-supervised learning (CSS) of
E3Outlier can be performed by the joint loss below:

LCSS = Lscl(B
′, A1, A2) + Lcls(B

′) (19)

After training, we design a simple but effective outlier score
based on inner product of learned representations: For the
datum x

(y)
i = Oc(xi|y) obtained by imposing the y-th

operation in Oc on xi, its outlier score Sc(x
(y)
i ) is given by:

Sc(x
(y)
i ) =

1

Z
(y)
scl

max
j 6=i

f>(x
(y)
i ) · f(x(y)

j ) (20)

where Z(y)
scl is the normalization term computed as follows:

Z
(y)
scl = (

1

N

N∑
i=1

||f(x(y)
i )||)−1 (21)

In Eq. (20), the score actually computes the maximum inner
product between the learned representations of x

(y)
i and

other data yielded by operation O(·|y), so as to measure
how similar x(y)

i is to the rest of data. With multiple opera-
tions in Oc, the final outlier score can be computed by:

Sc(xi) =
Kc∑
y=1

Sc(x
(y)
i ) (22)

Just like that contrastive learning paradigm significantly
improves the performance of self-supervised learning, our
later empirical evaluations show that contrastive E3Outlier
also advances the deep OD performance by a notable mar-
gin on those colored datasets that are relatively difficult
for previous generative and discriminative E3Outlier. As a
summary, by designing generative learning and contrastive
learning based solutions, we enable E3Outlier to be a more
flexible and stronger deep OD framework.
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Fig. 7: AUROC comparison of OD methods under different outlier ratios.

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Benchmark Datasets and Evaluation

To validate the effectiveness of the proposed framework,
we conduct extensive experiments on five frequently-used
public image benchmarks: MNIST (MST) [79], Fashion-
MNIST (FMST) [80], CIFAR10 (C10) [81], SVHN (SH) [82],
CIFAR100 (C100) [81]. We follow the standard procedure,
which is shared by previous image outlier removal works
like [8], [9], [46], to construct a noisy image set with outliers:
Given a standard image benchmark, all images from a class
with one common semantic concept (e.g. “horse”, “bag”) are
retrieved as inliers, while outliers are randomly sampled
from the rest of classes by an outlier ratio ρ. We vary ρ
from 5% to 25% by a step of 5%. The assigned inlier/outlier
labels are strictly unknown to OD methods and only used
for evaluation. Each class of a benchmark is used as inliers
in turn, and the performance on all classes is averaged as the
overall OD performance on this benchmark dataset. Since all
images are viewed as unlabeled in OD, we do not use the
split of train/test set and merge them for experiments. Note
that for CIFAR100 dataset, we uses 20 superclasses instead
of the original 100 classes to ensure that the constructed
noisy image set contains sufficient data for DNN’s training,
and it can also test the OD performance when inliers have
multiple subclasses (each superclass in CIFAR100 contains
5 classes). All experiments are repeated for 5 times with
different random seeds, so as to yield the average results.
Raw pixels are directly used as inputs with their intensity
normalized into [−1, 1]. As for evaluation, we adopt the
commonly-used Area under the Receiver Operating Charac-
teristic curve (AUROC) and Area under the Precision-Recall
curve (AUPR) as threshold-independent metrics [83].

4.1.2 Compared Methods

We extensively compare generative E3Outlier (E3Out.
(G)), discriminative E3Outlier (E3Out. (D)) and contrastive
E3Outlier (E3Out. (C)) with baselines and existing state-of-
the-art DNN based OD methods in literature: (1) Convolu-
tional Auto-Encoder (CAE) [84]. CAE is the most prevalent
DNN type to deal with image data in many unsupervised
learning tasks. Here it serves as an end-to-end baseline,
which directly uses CAE’s reconstruction loss to perform

deep outlier removal. (2) CAE+Isolation Forest (CAE+IF).
IF [40] is a classic OD method with wide popularity, so
we combine it with CAE as the baseline of two-stage
OD approaches. Specifically, CAE+IF feeds CAE’s learned
representations from its intermediate hidden layer into IF
to perform OD. (3) SSD+IF. It shares E3Outlier’s SSD part
but feeds SSD’s learned representations into an IF model
to perform OD. SSD+IF serves as a two-stage baseline to
compare against the proposed end-to-end E3Outlier. (4) Dis-
criminative Reconstruction based Auto-Encoder (DRAE) [9].
DRAE discriminates outliers by thresholding CAE’s recon-
struction loss with a self-adaptive scheme, which is in turn
integrated into the loss function to refine the outlier removal
performance. (5) Deep Structured Energy based Models
(DSEBM) [45]. DSEBM uses an energy based function and
score matching technique to estimate the probability that
a datum fits the data distribution. (6) Robust Deep Auto-
Encoder (RDAE) [46]. RDAE synthesizes CAE and RPCA,
and it iteratively decomposes unlabeled data into a low-
rank part and a sparse error part for outlier removal. (7)
Deep Auto-encoding Gaussian Mixture Model (DAGMM)
[48]. DAGMM embeds a GMM parameter estimation net-
work into CAE, which realizes end-to-end OD by perform-
ing representation learning and fitting a GMM simultane-
ously. (8) Multiple-Objective Generative Adversarial Active
Learning (MOGAAL) [50]. MOGAAL attempts to generate
pseudo outliers that are distributed around given unlabeled
data with modified GANs and active learning, so as to
transform OD into a supervised binary classification prob-
lem. (9) Robust Subspace Recovery based AE (RSRAE) [52].
RSRAE is the latest method that improves OD performance
by learning to recover the underlying data manifold in a
subspace while performing AE’s reconstruction. For RSRAE,
the reconstruction loss and RSR loss are optimized in a
seprated manner. In addition to deep solutions, we also
include the following baseline solutions for a more com-
prehensive comparison: (10) Two-stage solutions based on
pre-trained DNN and the classic OD model. DNN models
pre-trained on large-scale generic datasets prove to be an
effective tool for feature extraction. Thus, to design a two-
stage solution, we use a ResNet50 model pre-trained on
ImageNet dataset as feature extractor, and the extracted
features are then fed into a classic OD model. IF and the
classic Local Outlier Factor (LoF) are exploited here. Due to
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TABLE 1: OD performance comparison (in %) in terms of AUROC (Area Under ROC curve, shorted as ROC), AUPR-In
(Area under PR curve with inliers to be the positive class, shorted as PR-I) and AUPR-Out (Area under PR curve with
outliers to be the positive class, shorted as PR-O). Each benchmark shows the case where ρ = 10% and ρ = 20%. Note that
contrastive E3Outlier is only used for benchmark datasets with colored images (CIFAR10/SVHN/CIFAR100), and the raw
performance without score refinement is compared for fairness. The best performer is shown in bold font.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 10%

CAE 68.0 92.0 32.9 70.3 94.3 29.3 55.8 91.0 14.4 51.2 90.3 10.6 55.2 91.0 14.5
CAE+IF 85.5 97.8 49.0 82.3 97.2 40.3 54.1 90.2 13.7 55.0 91.4 11.9 55.0 90.7 13.8
DRAE 66.9 93.0 30.5 67.1 93.9 25.5 56.0 90.7 14.7 51.0 90.3 10.5 55.6 90.9 15.0

DSEBM 60.5 91.6 23.0 53.2 88.9 19.7 60.2 92.3 14.7 50.0 90.0 10.1 59.2 92.2 16.2
RDAE 71.8 93.1 35.8 75.3 95.8 31.7 55.4 90.7 14.9 52.1 90.6 10.8 55.6 90.9 15.0

DAGMM 64.0 92.9 26.6 64.0 92.7 30.3 56.1 91.3 15.6 50.0 90.0 19.3 54.9 91.1 14.2
MOGAAL 30.9 78.8 15.2 22.8 74.8 14.8 56.2 91.1 13.6 49.0 89.7 9.8 53.2 90.4 12.6

RSRAE 84.8 97.4 45.4 78.3 96.2 37.0 56.6 91.4 14.0 51.5 90.3 10.6 57.1 91.6 14.1
Res50+LoF 71.2 97.5 26.6 57.8 96.2 16.9 59.9 91.4 17.4 61.3 90.3 14.0 69.1 94.6 22.2
Res50+IF 83.4 97.5 43.3 82.7 97.3 43.8 64.8 93.8 17.9 57.4 92.0 12.8 67.5 94.3 21.0

SSD+IF 93.8 99.2 68.7 90.6 98.5 68.6 64.0 93.5 18.3 73.4 95.9 22.0 55.6 91.5 13.0
E3Out. (G) 86.7 96.4 60.3 89.6 98.5 61.6 66.3 93.5 20.0 63.6 93.9 15.0 61.2 92.4 16.7
E3Out. (D) 94.1 99.3 67.5 93.3 99.0 75.9 83.5 97.5 43.4 86.0 98.0 36.7 79.2 96.8 33.3
E3Out. (C) - - - - - - 89.0 98.5 53.2 90.1 98.5 51.3 84.1 97.8 38.0

ρ = 20%

CAE 64.0 82.7 40.7 64.4 85.3 36.8 54.7 81.6 25.5 50.7 80.2 20.7 54.4 81.7 25.6
CAE+IF 81.5 93.6 57.2 77.8 92.2 49.0 53.8 80.7 25.3 54.0 82.0 22.4 53.5 80.9 25.1
DRAE 67.3 86.6 42.5 65.7 86.9 36.6 55.6 81.7 26.8 50.6 80.4 20.5 55.5 81.8 27.0

DSEBM 56.3 81.2 32.3 53.1 79.6 31.7 61.4 85.2 27.8 50.2 80.3 20.2 57.9 83.7 27.8
RDAE 67.0 89.2 43.2 70.9 89.2 41.4 54.2 81.0 25.7 51.8 80.9 21.1 54.9 81.5 26.5

DAGMM 65.9 86.7 41.3 66.0 86.7 43.5 54.7 81.8 26.3 50.0 79.9 29.6 53.8 81.5 24.7
MOGAAL 37.8 70.6 28.0 34.0 66.6 28.3 55.7 82.0 25.0 49.6 79.8 19.8 53.1 80.9 24.4

RSRAE 78.9 91.3 53.0 74.5 90.4 46.3 55.6 82.1 25.8 51.1 80.3 21.0 56.3 82.7 25.2
Res50+LoF 62.4 84.9 31.0 53.4 80.3 24.9 63.6 84.9 27.9 59.3 85.0 25.2 65.3 87.5 32.6
Res50+IF 79.8 93.6 52.1 80.7 93.5 55.0 63.4 86.6 30.4 56.8 83.3 24.2 64.7 87.1 32.4

SSD+IF 90.5 97.3 71.0 87.6 95.6 71.4 60.2 85.0 28.3 69.2 89.5 33.7 54.3 82.1 23.4
E3Out. (G) 83.2 90.4 67.9 85.3 95.2 66.4 64.5 85.7 33.0 62.8 86.8 27.9 59.6 83.8 28.6
E3Out. (D) 91.3 97.6 72.3 91.2 97.1 78.9 79.3 93.1 52.7 81.0 93.4 47.0 77.0 92.4 46.5
E3Out. (C) - - - - - - 83.6 94.8 59.0 84.8 94.9 57.6 82.9 95.1 53.0

page limit, implementation details are provided in Sec. 5 of
the supplementary material. All of our codes and results can
be verified at https://github.com/demonzyj56/E3Outlier.

4.2 Experimental Results

4.2.1 Raw OD Performance Comparison

Due to the space limit, we report numerical results under
ρ = 10% and 20% in Table 1, while the AUROC comparison
under different outlier ratios are shown in Fig. 7. From
those results, we can obtain the following observations: (1)
First of all, the proposed E3Outlier framework possesses
an evident advantage against existing state-of-the-art DNN
based OD methods and baselines in terms of all evaluation
metrics. Taking discriminative E3Outlier as an example, it
outperforms the best performer among state-of-the-art DNN
based OD methods and baselines by a considerable 8%-
20% AUROC on different benchmark datasets. In particular,
it has realized a performance leap on CIFAR10, SVHN
and CIFAR100, which are generally acknowledged to be
challenging benchmarks for unsupervised learning tasks
like deep outlier removal or clustering. Meanwhile, with the
same CAE as backbone, the proposed generative E3Outlier is
able to achieve evidently superior performance to existing
CAE based deep OD solutions. Specifically, although it is

inferior to its discriminative and contrastive counterparts,
generative E3Outlier consistently outperforms all AE based
deep OD solutions in terms of AUROC, while it also yields
comparable or better AUPR-In and AUPR-Out performance.
Such improvement further justifies the effectiveness of in-
troducing richer self-supervision information, and in later
sections we show that generative E3Outlier also enables us
to flexibly handle other deep OD applications. Next, the
proposed contrastive E3Outlier is able to produce a signifi-
cant performance gain (about 4%-6% AUROC) on colored
datasets (CIFAR10/SVHN/CIFAR100) that are relatively
difficult for its discriminative and generative counterparts,
and it suggests that the potential of E3Outlier can be further
exploited by introducing more advanced self-supervised
learning paradigms. Thus, the above observations have
justified E3Outlier as a highly effective framework for DNN
based OD. (2) Second, we notice that the baseline OD
solutions that combine the classic OD model and features
extracted from pre-trained ResNet50 model (Res50+LoF and
Res50+IF) can indeed produce better performance than pre-
vious end-to-end OD solutions in many cases, which verifies
the importance of the good representation. However, there
is still a large performance gap between such two-stage
solutions and the proposed deep OD framework, especially
discriminative and contrastive E3Outlier. Thus, it further
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TABLE 2: Performance of discriminative E3Outlier (in %) before and after joint score refinement (JSR) in terms of Area
Under ROC curve, PR curve with inliers to be the positive class (PR-I) and PR curve with outliers to be the positive class
(PR-O). Each benchmark shows the case where ρ = 10% and ρ = 20% due to the space limit.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 10%

E3Out. 94.1 99.3 67.5 93.3 99.0 75.9 83.5 97.5 43.4 86.0 98.0 36.7 79.2 96.8 33.3
E3Out.+JSR 94.9 99.4 71.0 93.5 99.0 77.2 84.7 97.7 45.7 87.1 98.2 37.7 81.3 97.2 37.0

ρ = 20%

E3Out. 91.3 97.6 72.3 91.2 97.1 78.9 79.3 93.1 52.7 81.0 93.4 47.0 77.0 92.4 46.5
E3Out.+JSR 92.9 98.1 76.3 92.1 97.4 81.9 80.3 93.5 54.5 82.0 94.2 47.9 79.1 93.1 49.9

demonstrates the effectiveness of the proposed deep OD
framework. (3) Third, it is interesting to note that two-
stage OD approaches can be more effective than previ-
ous end-to-end OD approaches. Specifically, the two-stage
counterpart of discriminative E3Outlier SSD+IF achieves
fairly close performance to discriminative E3Outlier on rel-
atively simple gray-scale image datasets (MNIST/Fashion-
MNIST). Meanwhile, CAE based end-to-end OD solutions
(DRAE/DSEBM/DAGMM/RSRAE) cannot constantly out-
perform their two-stage counterparts (CAE+IF/RDAE), and
CAE+IF even performs much better than some CAE based
end-to-end solutions on MNIST/Fashion-MNIST. Neverthe-
less, as shown in Fig. 7a-Fig. 7e, the proposed discriminative
E3Outlier almost defeats its two-stage baseline SSD+IF in
all experiments, and it suffers from evidently worse per-
formance (i.e. over 10% AUROC loss) on difficult datasets
like CIFAR10/SVHN/CIFAR100. (4) Among existing end-
to-end OD methods, we notice that although recent end-to-
end DNN based OD methods (RSRAE) are indeed making
progress on relatively simple benchmarks like MNIST and
Fashion-MNIST, their performance on difficult datasets like
CIFAR10 is still as unsatisfactory as previous counterparts.
Besides, MOGAAL performs poorly in almost all cases,
which suggests that generating proper pseudo outliers are s
till very difficult for deep OD by now.

4.2.2 Score Refinement
In this section, we validate the effectiveness of score re-
finement for discriminative E3Outlier. As shown in Table
2, JSR enables consistent performance improvement under
different outlier ratios and all evaluation metrics. To show
the effect of each score refinement strategy, we further
compare the OD performance of five cases in terms of
AUROC: Baseline using no score refinement (BAS), using
the online re-weighting strategy only (ORW), with the re-
boot re-weighting strategy only (RRW), using the ensemble
strategy only (ENS) and using the joint score refinement
(JSR), under ρ = 10% with default NE score for discrim-
inative E3Outlier. We report the results in Table 3, from
which the following facts are drawn: First, when compared
with the baseline (BAS), score refinement strategies are
able to produce performance gain on all benchmarks by
up to 2.1% AUROC gain. The improvement tends to be
more tangible on comparatively difficult benchmarks like
CIFAR100. Besides, under other outlier ratios, using score
refinement also produces stable performance improvement
(1% to 2% AUROC) on difficult benchmarks. Second, RRW

TABLE 3: comparison of score refinement strategies (in %).

CONFIG. MST FMST C10 SH C100
BAS 94.1 93.3 83.5 86.0 79.2

BAS+ORW 94.4 93.6 84.1 86.7 80.3
BAS+RRW 94.6 93.6 84.4 86.5 80.5
BAS+ENS 94.3 93.4 84.1 86.7 80.7
BAS+JSR 94.9 93.5 84.7 87.1 81.3

tends to be slightly better than ORW, while ORW enjoys
lower computational cost. Finally, the joint score refinement
(JSR) with both reboot re-weighting and ensemble is typi-
cally better than a single score refinement strategy, except for
the case Fashion-MNIST where JSR performs comparably to
other refinement strategies. We also discuss the parameters
in score refinement in Sec. 4 of supplementary material.

4.2.3 Discussion
In this section, we discuss several key factors in E3Outlier.
Similarly, we conduct experiments under ρ = 10% to show
the general trends. We investigate the following factors of
discriminative E3Outlier: (1) Outlier scores: We compare
four different outlier scores for discriminative E3Outlier,
i.e. GTP/MP/MCD/NE. As shown by Fig. 8a, uncertainty
based scores (MP/MCD/NE) basically prevail over the
baseline GTP score, which validates the advantages of
exploring network uncertainty as outlierness measure for
E3Outlier. Among uncertainty based outlier scores, MCD
and NE are prone to outperform the simplest MP. Although
MCD achieves the best performance on some benchmarks,
it requires multiple forward passes and tends to be less effi-
cient than NE. By contrast, NE consistently outperforms the
baseline by a notable margin, and it realizes a good trade-
off between performance and efficiency. (2) The network ar-
chitecture of SSD: With other settings fixed, we additionally
explore ResNet20/ResNet50 [19] and DenseNet40 [85] as the
backbone architecture for SSD (shown in Fig. 8b). Despite
of some differences, those frequently-used architectures ba-
sically perform satisfactorily. Interestingly, we note that a
more complex architecture (ResNet50/DenseNet40) tends to
be more effective on relatively complex datasets (CIFAR10,
SVHN and CIFAR100), but its performance is inferior on
simpler datasets. (3) Training epochs (see Fig. 8c): We mea-
sure the OD performance when the SSD is trained by differ-
ent epoch numbers to evaluate its impact on self-supervised
learning. In general, we notice that the OD performance is
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Fig. 8: Different factors’ influence on E3Outlier’s performance under ρ = 10%.

inclined to be improved at the initial stage of training (less
than d 250K e training epochs) and then reach a plateau. No
drastic performance changes are observed as the training
epochs continue to increase. (4) Pseudo label design. Since
the operation set is often constructed by a composite of
multiple types of transformations, it is natural to consider
a multi-label way to assign pseudo labels. To explore its
possibility, we assign each transformed datum with 5 labels
based on the performed transformations: Simple rotation
label (4 classes in total), translation label (3×3 = 9 classes in
total), irregular rotation label (8+1=9 classes in total), flip la-
bel (2 classes in total) and patch re-arranging label (23+1=24
classes in total). The DNN is equiped with 5 classification
heads to predict 5 labels, while the outlier score is com-
puted by averaging the outlier scores yielded by 5 heads.
We report the performance of such a multi-label setup in
Table 4, and the results suggest that it can yield slightly
better performance on most benchmark datasets. Thus, it is
possible to explore a more effective design of pseudo labels
for E3Outlier. For generative and contrastive E3Outlier, we
investigate two major factors: (1) Backbone architecture for
generative E3Outlier. In fact, one can explore different back-
bone architecture to implement the generative DNN G for
generative E3Outlier, and we test UNet as an example. As
shown in Table 5, the results suggest that UNet is also able
to yield fairly satisfactory OD performance, and we notice
that UNet performs evidently better than CAE on relatively
difficult datasets CIFAR10/SVHN/CIFAR100, while CAE
tends to be better on simpler MNIST/Fashion-MNIST. (2)
Classification loss Lcls for contrastive E3Outlier. It is noted
that the loss of classification Lcls when training the DNN
model of contrastive E3Outlier, and we also discuss the case
where only the contrastive loss Lscl is applied. Interest-
ingly, contrastive E3Outlier without Lcls yields sigificantly
worse performance on CIFAR10/CIFAR100 (77.3%/76.6%
AUROC under ρ = 10%), but the performance is better on
SVHN (91.7% AUROC under ρ = 10%). The reason is that
the performance on “0” class of SVHN suffers from a drastic
degradation when classification is performed, as “0” is still
a “0” aften a rotation of 90, 180 or 270 degrees. Thus, the
classification task is completely invalid in this case.

4.3 E3Outlier based Video Abnormal Event Detection
4.3.1 Unsupervised Video Abnormal Event Detection
Inspired by E3Outlier’s success with images, it is natural to
explore E3Outlier for other type of visual data, e.g. videos.

To this end, unsupervised video abnormal event detection
(UVAD) [10] is exactly an application of deep OD to videos.
UVAD is an emerging task that aims to detect those un-
usual events that divert from other frequently-encountered
routine in completely unlabeled video sequences. As it does
not require labeling and enumerating normal video events
to construct a training set, UVAD is more challenging than
semi-supervised VAD that has been thoroughly studied
[86]. Most existing UVAD solutions approach UVAD by
change detection and its variants [10], [87], [88], while the
recent work [89] also proposes a different solution that first
initializes the detection results based on IF and pre-trained
DNNs, and then refines the detection iteratively. However,
existing UVAD solutions typically perform unsatisfactorily.

4.3.2 Design of E3Outlier based UVAD Solution
Before we tailor the E3Outlier for UVAD, we notice two
important differences between UVAD and previous outlier
image removal task: First, despite that discriminative and
contrastive E3Outlier are shown to be highly effective in
detecting outlier images by appearance information (e.g.
structure and texture), normal and abnormal video events
are often conducted by the same type of subjects in UVAD
(For example, humans in Fig. 9). In other words, appearance
differences are less important to UVAD. Second, unlike
static images, videos are described by both appearance and
motion information. As motion is the key to detecting many
abnormal events, optical flow maps of video frames are
often computed to describe the motion in videos. Therefore,
both raw video frames and optical flow maps are supposed
to be exploited for providing self-supervision. Due to those
differences, we naturally turn to generative E3Outlier to con-
nect both appearance and motion view. Based on generative
E3Outlier, the designed UVAD solution is presented below:

First of all, we follow our previous work [90] to extract
and represent video events: Foreground objects in each
video frame are first localized by a series of regions of
interest (RoIs). Then, 5 rectangular patches are extracted
from current and 4 neighboring frames by the location of
each RoI. Afterwards, they are normalized into 32× 32 and
stacked into a 5 × 32 × 32 spatio-temporal cube (STC) x =
[p1; · · · ; p5], where pi is a normalized patch (i = 1, · · · , 5).
Note that a STC x serves as the basic representation of a
video event, because it not only describes the foreground
object but also contains its motion in a time interval. To
apply generative E3Outlier, we then design the operation
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TABLE 4: Performance comparison (in %) of discriminative E3Outlier with single-label (SL) and multi-label (ML) learning.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

E3Out. (SL) 94.1 99.3 67.5 93.3 99.0 75.9 83.5 97.5 43.4 86.0 98.0 36.7 79.2 96.8 33.3
E3Out. (ML) 95.4 99.5 71.1 92.7 98.9 72.9 84.1 97.6 45.1 86.9 98.1 38.5 80.0 97.0 34.9

TABLE 5: Performance comparison (in %) of different DNN models for generative E3Outlier.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

CAE 86.7 96.4 60.3 89.6 98.5 61.6 66.3 93.5 20.0 63.6 93.9 15.0 61.2 92.4 16.7
UNet 82.0 95.0 56.5 86.4 98.0 52.8 72.2 92.0 26.1 68.5 94.7 18.6 65.5 93.5 20.5

(a) A person riding in the crowd. (b) A skater and a riding person. (c) A student throwing his backpack.

Fig. 9: Examples of abnormal events on UCSDped1, UCSDped2 and Avenue datasets (walking pedestrians are normal).

TABLE 6: Performance comparison of state-of-the-art UVAD
methods with our E3Outlier based UVAD solution in terms
of frame-level AUC (“-” indicates that the performance is
not reported).

UCSDPED1 UCSDPED2 AVENUE

SCD [10] 59.6% 63.0% 78.3%
UM [87] 68.4% 82.2% 80.6%
MC2ST [88] 71.8% 87.5% 84.4%
DOR [89] 71.7% 83.2% -
E3OUT. 79.5% 92.6% 89.2%

O(·|y1) and O(·|y2) as follows: Given an input STC, O(·|y1)
is defined by O(x|y1) = [p1; p2; p4; p5], which means delet-
ing the middle patch in the STC x. Meanwhile, we devise
two types of O(·|y2): (1) O(x|y2) = p3, which suggests
fetching the middle patch of x. (2) O(x|y2) = OF (p3),
which means transforming p3 into its corresponding optical
flow map. In this way, we actually define a self-supervised
learning task that aims to infer p3 and its optical flow map
based on x’s remaining patches p1, p2, p4, p5. We simple use
CAE to carry out this generative task. As described in Sec.
3.6.1, we can train the models by the objective in Eq. (14) and
score each STC by Eq. (15). The scores yielded by two types
of O(·|y2) operations are normalized and then summed to
obtain the final score of each STC. The minimum of all STCs’
scores on a frame is viewed as the frame score. More details
are provided in Sec. 5 of supplementary material.

4.3.3 Performance Evaluation and Comparison

To evaluate the performance of our UVAD solution, we
conduct experiments on three most commonly-used VAD
benchmark datasets: UCSDped1 [91], UCSDped2 [91] and

Avenue [92]. Following the standard practice in VAD, we
compute frame-level AUC [91] as the quantitative perfor-
mance measure, and compare our method with latest state-
of-the-art UVAD approaches: Shuffled change detection
(SCD) [10], Unmasking (UM) [87], Multiple Classifier Two
Sample Test (MC2ST) [88], and Deep Ordinal Regression
(DOR) [89]. The results are displayed in Table 6, and we can
discover that the proposed E3Outlier based UVAD solution
outperforms existing UVAD solutions by by a 4% to 10%
frame-level AUROC, which justifies E3Outlier as a flexible
and effective solution to different OD applications. Besides,
unlike SCD, UM and MC2ST that require feature extraction
based on hand-crafted descriptors, the proposed E3Outlier
based solution achieves end-to-end UVAD, while it also
leads the other deep UVAD solution DOR by a huge margin.

5 CONCLUSION

In this paper, we propose a self-supervised deep OD frame-
work named E3Outlier. E3Outlier for the first time leverages
discriminative self-supervised learning for deep OD, which
facilitates more effective representation learning from raw
images. Then we demonstrate inlier priority, a property that
lays the foundation for end-to-end OD, by both theory and
empirical validations. Afterwards, we illustrate how the net-
work uncertainty of discriminative DNNs can be utilized as
a new outlierness measure, and present three specific outlier
scores that can outperform the baseline. Then, the joint score
refinement that fuses two types of strategies can be used
to further boost OD performance. Finally, we demonstrate
the applicability of E3Outlier to different learning paradigms
and other deep OD applications.
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E3Outlier : A Self-supervised Framework for
Unsupervised Deep Outlier Detection

Siqi Wang, Yijie Zeng, Guang Yu, Zhen Cheng, Xinwang Liu, Sihang Zhou,
En Zhu, Marius Kloft, Jianping Yin, Qing Liao

Abstract—Existing unsupervised outlier detection (OD) solutions face a grave challenge with surging visual data like images. Although
deep neural networks (DNNs) proves successful for visual data, deep OD remains difficult due to OD’s unsupervised nature. This
paper proposes a novel framework named E3Outlier that can performs effective and end-to-end deep outlier removal. Its core idea is to
introduce self-supervision into deep OD. Specifically, our major solution is to adopt a discriminative learning paradigm that creates
multiple pseudo classes from given unlabeled data by various data operations, which enables us to apply prevalent discriminative
DNNs (e.g. ResNet) to the unsupervised OD problem. Then, with theoretical and empirical demonstration, we argue that inlier priority,
a property that encourages DNN to prioritize inliers during self-supervised learning, makes it possible to perform end-to-end OD.
Meanwhile, unlike frequently-used outlierness measures (e.g. density, proximity) in previous OD methods, we explore network
uncertainty and validate it as a highly effective outlierness measure, while two practical score refinement strategies are also designed
to improve OD performance. Finally, in addition to the discriminative learning paradigm above, we also explore the solutions that exploit
other learning paradigms (i.e. generative learning and contrastive learning) to introduce self-supervision for E3Outlier. Such
extendibility not only brings further performance gain on relatively difficult datasets, but also enables E3Outlier to be applied to other
OD applications like video abnormal event detection. Extensive experiments demonstrate that E3Outlier can considerably outperform
state-of-the-art counterparts by 10%-30% AUROC. All codes are available at https://github.com/demonzyj56/E3Outlier.

Index Terms—outlier detection, deep neural networks, unsupervised learning, self-supervised learning

F

1 INTRODUCTION

IN realms like machine learning and data science, outliers,
which are also called novelties, anomalies, deviants, ex-

ceptions, irregularities, etc [1], have a pervasive existence.
Outlier detection (OD), which may also be referred as
unsupervised anomaly/outlier detection, is a long-standing
problem that draws continuous attention from the research
community. To provide a clear and strict formulation of OD
problem, this paper follows the definition used in the recent
OD survey paper [2]: Given a set of data instances, OD is
an unsupervised task that aims to identify those instances
that deviate significantly from the rest of data. Thus, outliers
are discerned from given unlabeled data by a transductive
learning setup. OD is of great importance in practice: First,
as data labeling is usually expensive and time-consuming, it
is often required to deal with massive unlabeled data. As a
result, OD has been a frequently-encountered unsupervised
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task when handling prevalent unlabeled data. Second, even
for supervised/semi-supervised tasks, OD plays a vital role
in the data cleansing stage (e.g. removing wrongly-labeled
data or noise when building a data set), which is the founda-
tion for obtaining high-quality models. OD enjoys a variety
of real-world applications, such as financial fraud detection
[3], emerging topic detection [4], computer-aided medical
diagnosis [5], motion trajectory analysis [6], etc. Since the
only prior knowledge is that outliers have rare occurrence
when compared with inliers, no supervision information is
available for OD here. Due to its unsupervised nature, OD
is usually addressed by exploiting some intrinsic properties
of data, e.g. density, proximity, cluster membership, etc. A
more detailed review of classic OD is given in Sec. 2.1.
In particular, we distinguish OD in this paper from the
(semi-supervised) anomaly detection or one-class classification
[7], which builds a normality model from a pure set of
labeled normal data and detects deviants in a separated test
set by an inductive learning setup. To avoid any confusion, a
detailed clarification of terms is also provided in Sec. 6 of the
supplementary material, so as to differentiate OD here from
other relevant but different realms like (semi-supervised)
anomaly detection and out-of-distribution detection.

With the widespread use of photographic equipment
(e.g. cameras, smart phones), visual data like images and
videos have undergone an explosive growth in these years.
In this context, a marriage of OD and visual data is pretty
natural, and it gives birth to many novel applications,
such as the refinement of web image search results [8],
[9] and video abnormal event detection [10], [11]. Among
various forms of visual data, images have constantly played
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Fig. 1: An example of deep outlier image removal task.

a fundamental role in all sorts of visual analysis. There-
fore, this paper will focus on OD for image data, i.e. the
image outlier removal task. For an intuitive illustration,
we show an example that aims to remove outliers from
images of cats (inliers) in Fig. 1. Compared with frequently-
seen tabular data (or vectorized data), image data exhibit
evidently different characteristics: They possess a variety
of high-level spatial structures that are endowed with rich
semantics, and low-level details (i.e. image pixels) alone are
much less meaningful to perception. As a consequence, a
direct application of those classic OD methods to image
data usually leads to poor performance, and proper image
representations will be a prerequisite for successful outlier
removal. As a simple solution, some works [8], [12] extract
the image representations by hand-crafted feature descrip-
tors (e.g. SIFT [13], sparsity-constrained linear coding [14]),
and then feed the extracted feature vectors into a classic
OD method. However, such solutions bring about complex
feature engineering issues, and they often suffer from sub-
optimal image representations and poor transferability. To
this end, an emerging trend is to learn good representations
automatically via deep neural networks (DNNs) during
the learning process, so as to realize a certain goal like
image classification or segmentation. Such an end-to-end
deep learning paradigm has achieved remarkable success
in computer vision, especially with discriminative DNNs
for supervised learning tasks [15]. However, although intro-
ducing DNNs for deep outlier removal seems to be pretty
straightforward, a both effective and end-to-end DNN based
OD solution still requires exploration. The major impedi-
ment to developing such a solution lies in the unsupervised
nature of the OD task, i.e. the absence of data labels results
in a lack of supervision signal. Consequently, as several
recent surveys point out [2], [16], [17], [18], auto-encoder
(AE) still plays a dominant role in deep OD, while other
widely-used DNNs like discriminative ResNet [19] are not
directly applicable for deep OD without any given labels.

To bridge those gaps in deep OD, we propose the first
self-supervised framework termed E3Outlier, which aims to
realize both effective and end-to-end deep outlier removal.
Specifically, our core idea is to remedy the label absence
in OD by introducing self-supervision. To this end, our
major solution is to create multiple pseudo classes from
given unlabeled data by imposing certain data operations
like rotation and patch re-arranging. With labels of those
pseudo classes, powerful discriminative DNNs that have
been thoroughly studied can be exploited in OD and enable

more effective representation learning. Second, in order
to further conduct end-to-end OD, we unveil a property
named “inlier priority”: Even though inliers and outliers are
indiscriminately fed into the DNN during self-supervised
learning, the DNN tends to prioritize inliers’ loss reduction.
We provide both theoretical and empirical demonstration to
this property. Third, instead of commonly-used outlierness
measure (e.g. density and proximity), we point out that the
DNN uncertainty in self-supervised learning can be lever-
aged to design highly effective outlier scores. Meanwhile,
inspired by the inlier priority and network uncertainty,
we develop two practical strategies and fuse them into a
score refinement stage to yield performance enhancement.
Finally, in addition to the aforementioned discriminative
learning paradigm, we further design the solution to lever-
age generative/contrastive learning paradigm to perform
self-supervised learning for the proposed E3Outlier frame-
work. With the extendibility to different learning paradigms,
E3Outlier is not only able to be flexibly applied to other
OD applications like video abnormal event detection, but
also yield further performance gain on relatively difficult
datasets. Our main contributions can be summarized below:

• We for the first time design a self-supervised learning
framework for DNN based OD. It not only eases the
lack of supervision, but also enables discriminative
DNNs to be directly applied to the deep OD problem.

• We unveil a property named inlier priority during
self-supervised learning, and theoretical and empiri-
cal demonstration are presented to justify this prop-
erty. It lays the foundation to perform end-to-end OD
with the proposed E3Outlier framework.

• We point out that the uncertainty of discriminative
DNN can be exploited as a novel outlierness measure
in deep OD, and develop several highly effective
uncertainty based outlier scores for end-to-end OD.
Moreover, we propose joint score refinement with
two practical strategies to boost the OD performance.

• We further design solutions that incorporates genera-
tive learning and contrastive learning paradigm into
the E3Outlier framework to provide self-supervision,
which endows the proposed framework with more
flexibility and better OD performance.

An earlier version of this paper is reported in [20], and
this paper is mainly extended in terms of the following
aspects: (1) This paper explicitly points out that DNN un-
certainty can be used as a new outlierness measure, and in-
tuitively unveils the connection among OD, self-supervised
learning and network uncertainty. Compared with this pa-
per, [20] just reported empirical comparison of different
outlier scores and did not provide in-depth analysis into
the underlying principle of score design. (2) We design sev-
eral practical strategies to conduct outlier score refinement,
which enables the model to achieve consistent performance
enhancement against the performance reported in [20] on
all benchmark datasets. (3) Unlike [20] that only exploited
discriminative learning paradigm for deep OD, this paper
further validates the applicability of generative learning or
contrastive learning paradigm to E3Outlier. (4) Apart from
the image outlier removal task in [20], this paper shows that
the proposed E3Outlier framework is also able to achieve
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superior performance in other deep OD application like
unsupervised video abnormal event detection.

2 RELATED WORK

2.1 Shallow Model based Outlier Detection
A vast number of shallow methods have been proposed
to handle OD, and they usually fall into the following
categories: (1) Proximity based methods, which measure the
outlierness of a datum by its relation to its neighboring data.
Early methods of this type simply assume the data density
to be homogeneous, and define some intuitive quantities
as outlier scores, such as the distance to the k-th neareast
neighbors (k-nn) [21] and the number of neighbors within a
pre-defined radius [22]. To this end, Local Outlier Factor
(LoF) [23] is the first work that considers local outliers
using the average ratio of one datum’s neighbor’s local
reachability density to its own reachability density, which
inspires numerous subsequent works, e.g. Connectivity-
based Outlier Factor (CoF) [24] considers the degree of
connectivity among data when computing outlier scores,
while Local Outlier Probability (LoOP) [25] estimates the
probability of being an outlier by assuming a half-Guassian
distribution on a datum’s distance to its k-nn. As computing
k-nn can be time-consuming, recent works [26], [27] propose
to leverage subsampling and achieve linear time complexity.
(2) Statistics based methods, which view data endowed with
low likelihood as outliers. The likelihood can be estimated
by several statistical models, including parametric and non-
parametric statistical models. As to parametric models,
the most representative model is Gaussian Mixture Model
(GMM) [28], and recently a more robust GMM based OD
approach is proposed by Tang et al. [29] by incorporating
subspace learning. Meanwhile, as to non-parametric mod-
els, kernel density estimation (KDE) [30] is frequently used
for OD, while and its its recent variants like [31], [32], [33]
are developed to improve its efficiency of OD. (3) Clustering
based methods, which view data that do not belong to
any major data cluster as outliers. For example, Jiang et
al. [34] perform OD by a modified k-means algorithm and
constructing a minimal spanning tree from cluster centers.
He et al. [35] combine LoF and clustering into CBLOF,
which quantitatively distinguishes small and large clusters.
To avoid specifying the number of clusters, a recent work
by Yan et al. [36] propose to leverage Gibbs Sampling of
Dirichlet Process Multinomial Mixture (GSDPMM) for OD.
Chenaghlou et al. [37] extends the clustering based OD to
online streaming data by considering the evolve of clusters.
(4) Projection based methods, which project the original
data into a new space to manifest outlierness. Concretely,
data can be projected into a low-dimensional embedding by
dimension reduction techniques like principal component
analysis (PCA) [38] or neural networks like shallow autoen-
coders [39], and outliers are viewed to be those data that are
poorly recovered from the embeddings. In particular, Liu et
al. [40] propose Isolation Forest (IF), which projects input
data into the tree nodes of random binary trees, and then
discriminate outliers by the depth of tree nodes. IF proves
to be a both effective and efficient OD method, while recent
works by Hariri [41] propose to further improve IF by using
random hyperplane cut. Besides, projection techniques like

local sensitivity hashing [42] and random projection [43] are
also used to reduce complexity of OD models. A more com-
prehensive review on shallow OD methods can be found in
recent survey papers [2], [16], [17], [18]

2.2 DNN based Outlier Detection
As a newly-emerging topic, DNN based OD is highly chal-
lenging as it requires to learn suitable data representations
for OD. To our best knowledge, only few attempts have
been made in the literature. A straightforward idea is to
exploit a two-stage solution, which performs representation
learning by DNNs first, and then feeds learned features into
a separated module that is implemented by some classic
OD model (reviewed in [44]). However, such two-stage
approaches may suffer from the incompatibility between
learned features and the OD module, which can lead to sub-
optimal performance. By contrast, state-of-the-art methods
usually conduct a joint learning of data representations
and outlier scores, and we review each existing solution
to our best knowledge below: Xia et al. [9] design a new
loss function that encourages a better separation of inliers
and outliers by minimizing intra-class variance for multi-
layer AE, and propose an adaptive thresholding technique
to discriminate outliers; Zhai et al. [45] connect an energy
based model with a regularized AE, and develop an energy
based score for OD; Zhou et al. [46] utilize a combination
of deep AE and Robust Principal Component Analysis
(RPCA), which decomposes the matrice of unlabeled data
into a low-rank part and a sparse part to represent inliers
and outliers respectively, while Chalapathy et al. [47] also
adopt a similar idea; Chen et al. [39] propose to generate
a set of AEs that possess randomly varied connectivity
architecture to perform OD, while adaptive sampling is
leveraged to make the approach more efficient and effective.
Inspired by Gaussian Mixture Model (GMM), Zong et al.
[48] focus on developing an end-to-end OD solution that
embeds a GMM density estimation network into the deep
AE, and both components are optimized simultaneously;
Unlike other methods that rely on AEs, Pang et al. [49] pro-
pose a ranking-model based framework named RAMODO,
which can be readily incorporated into random distance
based OD approach to perform efficient OD with tabular
data; Liu et al. [50] convert OD into a binary classification
problem via generative adversarial networks (GANs) [51],
which are modified to generate simulated outliers; The most
recent work [52] exploits the latent low-dimensional sub-
space structure in data by adding a Robust Subspace Recov-
ery (RSR) regularizer into AE, and two variants, RSRAE and
RSRAE+, are proposed for deep outlier removal. As several
recent surveys point out [2], [17], [18], AE still plays a center
role in existing deep OD solutions due to its unsupervised
nature, which motivates us to develop E3Outlier.

2.3 Self-supervised Learning and Network Uncertainty
Self-supervised learning, which is also known as surrogate
supervision [53] based learning or pseudo supervision [54]
based learning, enjoys a swift growth of popularity in recent
research. Its core idea is to construct additional supervision
signals from given data by introducing a pretext task. The
learning targets of pretext task can be obtained by numerous
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ways, such as clustering [55], geometric transformations
[56], [57], masking [58], image patch permutation [59], time
sequence shuffling [60], contrastive learning [61], etc. As a
highly effective pre-training technique or auxiliary task to
improve the performance of high-level downstream tasks,
self-supervised learning has been explored in many ap-
plication scenarios, such as image classification, semantic
segmentation, object detection and action recognition [62].
To our best knowledge, this is the first work that connects
self-supervised learning to unsupervised outlier analysis.

DNN’s uncertainty reflects its confidence to a certain
prediction, which usually makes it a concept for inductive
learning. Several methods have been proposed to quantify
network uncertainty, such as Bayesian Neural Networks
(BNN) [63], Monte Carlo dropout (MC-Dropout) [64], model
ensemble [65], maximum softmax probability [66], informa-
tion entropy [67], etc. Despite that network uncertainty has
drawn increasing attention, its application is typically lim-
ited to knowing whether DNN makes trustworthy predic-
tions or detecting the dataset shift. In this paper, we for the
first time discuss network uncertainty under a transductive
setup, and demonstrate that it can serve as a fairly effective
outlierness measure for DNN based OD.

3 THE PROPOSED FRAMEWORK

3.1 Problem Formulation
Suppose that the data space spanned by all images is
denoted by X . DNN based OD deals with a completely
unlabeled image data collectionX ⊆ X that is contaminated
by outlier images. In other words, X consists of an inlier
set Xin and an outlier set Xout, while X = Xin ∪ Xout

and Xin ∩ Xout = ∅. By the definition of outliers [68],
image data of the inlier set are from the same underlying
distribution that shares close semantics, but outliers origi-
nate from different distributions. Given any image x ∈ X ,
DNN based OD intends to build a scoring model S(·), which
takes raw x as the input and does not perform any prior
feature extraction. The goal of S(·) is to output S(x) = 1
for any inlier x ∈ Xin, while S(x) = 0 for any outlier
x ∈ Xout. In practice, a larger output S(x) signifies a lower
likelihood to be an outlier for x. Besides, within the domain
of DNN based OD, end-to-end OD refers to the case where
both representation learning and OD can be carried out by
the same DNN, and no separated classic OD method is
involved. In this paper, the proposed E3Outlier framework
aims to achieve both effective and end-to-end OD.

3.2 Discriminative E3Outlier
3.2.1 Motivation
As reviewed in Sec. 2.2, it is noted that AE based solutions
play a center role in the deep OD task due to its unsuper-
vised setup. Specifically, deep AE based solutions typically
perform unsupervised representation learning by learning
to reconstruct the inputs, which is realized by training the
deep AE to reduce pixel-wise reconstruction errors like
mean square errors (MSE). However, recent researches like
[69], [70] demonstrate that such a pixel-wise reconstruction
tends to overemphasize low-level image details, which are
of very limited interest to human perception. By contrast,

semantics of high-level image structures are ignored, but
they are actually pivotal to DNN based OD. Another emerg-
ing type of generative DNNs is GANs. Despite of fruitful
progress, it is still challenging to integrate them into OD
[71]: First, it is actually difficult to generate sufficient real-
istic image outliers, as potential image outliers are infinite
and generating high-quality image outliers by GANs is still
an open topic; Second, efficient representation learning with
GANs is neither straightforward nor easy. By comparison,
the supervised discriminative learning paradigm is still the
most effective way to learn image semantics and capture
high-level structures so far. As a result, these reasons above
motivate us to introduce self-supervision, so as to enable the
use of discriminative learning paradigm in OD.

3.2.2 Self-supervised Discriminative Network (SSD)
The availablity of supervision signals is the key to introduce
discriminative DNNs like ResNet [19] and Wide ResNet
(WRN) [72] to OD. As image classification is the most
fundamental task in supervised learning, creating several
pseudo classes from given unlabeled data is a natural idea.
Instead of generating a pseudo outlier class like [50], which
is a straightforward but difficult task, we propose to build
self-supervision by exerting some frequently-seen data op-
erations on given images. Those new data produced by a
certain operation are viewed as one pseudo class. After-
wards, we can readily realize representation learning with a
discriminative DNN by training it to classify those created
pseudo classes. As the discriminative DNN is guided by
self-supervision, we term it self-supervised discriminative net-
work (SSD) here. Formally, supposing a set of K operations
O = {O(·|y)}Ky=1 is designed to create pseudo classes, we
impose the y-th operation O(·|y) on an unlabeled image
x (regardless of an inlier or outlier) and produce a new
image x(y) = O(x|y). In this way, we can create the y-
th pseudo class X(y) = {x(y)|x ∈ X}, with the pseudo
label y assigned to all data in this class. Then, given all data
X ′ = {X(1), · · · , X(K)} and their label set Y , an SSD with
a K-node Softmax layer is trained to perform classification.
Like the standard classification process, the SSD is supposed
to classify a datum x(y′) into the y′-th pseudo class. The
probability vector of x(y′) output by SSD’s Softmax layer is
denoted as P(x(y′)|θ) = [P (y)(x(y′)|θ)]Ky=1, where P (y)(·)
and θ indicate the probability from the y-th node of Softmax
layer and DNN’s leanable parameters respectively. To train
the SSD, we can minimize the following objective function:

LSSD =
1

N

N∑
i=1

LSS(xi|θ) (1)

where LSS(xi|θ) represents the loss incurred by xi in X
during the self-supervised learning. When the standard
cross-entropy loss is used, LSS(xi|θ) takes the form below:

LDSS(xi|θ) = −
1

K

K∑
y=1

log(P (y)(x
(y)
i |θ)) (2)

Another key to SSD is the design of data operation. We
introduce three sets of operations: Regular affine operation
set ORA, irregular affine operation set OIA and patch re-
arranging operation set OPR. The general intuition behind
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Irregular Affine Transformation

Patch Re-arranging

Inliers
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Unlabelled Data with
both Inliers/Outliers Operations for Self-supervision

Network Uncertainty 
based Outlier Scores

Self-supervised Learning with
Discriminative DNN

Data of Multiple Pseudo Classes

Pseudo Class Probabilities

Reweighting

Ensemble

Score Refinement

Fig. 2: Overview of the proposed discriminative E3Outlier for deep OD.: Given unlabeled image data polluted by outliers,
three operation sets are first imposed on images to create multiple pseudo classes and provide self-supervision. Then, a
discriminative DNN is trained to perform the self-supervised learning, i.e. learning to classify those created pseudo classes.
Next, the outlierness of each image is measured by the proposed network uncertainty based outlier score. Finally, the joint
score refinement with re-weighting and ensemble strategy can be used to further boost the OD performance of E3Outlier.
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Fig. 3: Comparison of learned image representations.

those operations is to force DNN to capture the semantics of
high-level structures in an image when it is required to fulfill
such a classification task. For example, to recognize what
type of rotation is imposed on the original image, the DNN
must learn to localize salient object in images and recognize
the orientation of its high-level parts, such as the head and
legs of a human. Due to the page limit, we illustrate the de-
tails of data operation design in Sec. 1 of the supplementary
material. Due to the prevalence of discriminative DNNs,
creating pseudo classes by data operations is an intuitive
and convenient way to provide self-supervision for deep
OD. The overview of discriminative E3Outlier is presented
in Fig. 2. However, we will show other learning paradigms
are also applicable to the proposed E3Outlier later.

3.2.3 Comparison between SSD and AE
To verify whether SSD can learn better image representa-
tions, we conduct a simple experiment that compares SSD
with Convolutional AE (CAE). We select WRN-28-10 [72]
as SSD and adopt the CAE architecture in [57], which has
a close depth to the SSD.Then, we extract the outputs of
SSD’s penultimate layer as learned representations, while
the outputs of CAE’s intermediate layer are extracted for
comparison (note that they share the same dimension).
With the protocol described in Sec. 4.1 to evaluate the OD
performance on image datasets, learned representations of
SSD and CAE are both fed into an Isolation Forest (IF)

model with the same parameterization to conduct OD. The
comparison is shown in Fig. 3: On those image benchmarks,
learned representations of SSD are always able to improve
IF’s OD performance, which justifies SSD’s effectiveness.

3.3 Inlier Priority: Foundation of End-to-end OD
3.3.1 Motivation
Although the proposed SSD achieves more effective rep-
resentation learning than CAE, there are still some prob-
lems: First, without using a specialized OD network like
[48], the proposed paradigm actually learns a pre-text task
(i.e. classification) instead of OD, so by now we cannot
draw OD results directly from SSD alone; Second, although
we can resort to a classic OD model like we did in Sec.
3.2.3, such a two-stage solution can be sub-optimal as
learned representations and the OD model are not jointly
optimized. In fact, the OD performance of SSD+IF solu-
tion in Sec. 3.2.3 indeed has room for improvement (60%-
70% AUROC) on relatively difficult benchmarks, i.e. CI-
FAR10/SVHN/CIFAR100. Therefore, an end-to-end solu-
tion is favorable for deep OD. However, for the proposed
SSD, data operations are equally imposed on both inliers
and outliers to create a pseudo class, and they are indiscrim-
inately fed into DNN for training. Thus, it is still not sure
whether inliers and outliers will behave differently during
the self-supervised learning. This motivates us to explore
this issue below from both theoretical and empirical view.

3.3.2 The Theoretical View
First of all, we approach this issue from a theoretical view.
Since the theoretical analysis of DNNs remains particularly
difficult, we consider a simplified case that is analyzable:
We choose a feed-forward network with a single hidden
layer and sigmoid activation to be SSD. Suppose that the
hidden layer and Softmax layer have (L + 1) and K
nodes respectively. Parameters of the simple SSD is ran-
domly initialized by an i.i.d uniform distribution on [−1, 1].
Since neural networks are usually optimized by gradient
descent, the influence of inliers and outliers imposed on
the SSD can be reflected by the gradients that they back-
propagate to update the network parameters. Hence, we
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Fig. 4: An illustration of de facto update and the average de facto update of inliers/outliers during the network training. The
class used as inliers is in brackets.

analyze gradients w.r.t the weights associated with the c-
th class (1 ≤ c ≤ K) between the hidden layer (it is also
the penultimate layer in this case) and the final Softmax
layer, wc = [ws,c]

(L+1)
s=1 (wL+1,c is the bias), which are di-

rectly responsible for making SSD’s predictions. We discuss
the case of iniers (Xin) first: For the cross-entropy loss
L that is used in our case, only those data yielded by
imposing the c-th operation on Xin are used to update wc,
i.e. X(c)

in = {x(c) = O(x|c)|x ∈ Xin}. The gradient vector
incurred by X(c)

in is denoted by ∇wcL = [∇ws,cL]
(L+1)
s=1 , and

each element of ∇ws,cL is given by:

∇ws,cL =

Nin∑
i=1

∇ws,cL(xi) =

Nin∑
i=1

(P (c)(xi)− 1)h(s)(xi) (3)

where Nin = |X(c)
in | = |Xin| is the number of inliers. For

xi ∈ X(c)
in , P (c)(xi) is the output of c-th node in the Softmax

layer, and h(s)(xi) is the output of s-th node in the penul-
timate layer. To quantify inliers’ influence on a randomly
initialized SSD, a direct indicator can be the expectation of
inliers’ gradient magnitude to update wc, E(in)(||∇wc

L||22).
Thus, our goal is to obtain:

E(in)(||∇wcL||
2
2) = E

( L+1∑
s=1

(∇ws,cL)
2) = L+1∑

s=1

E
(
(∇ws,cL)

2)
(4)

By addition in (3), computing (4) requires the term below:

E
(
(∇ws,cL)

2) = E
(
(

Nin∑
i=1

∇ws,cL(xi))
2)

=

Nin∑
i=1

Nin∑
j=1

E(∇ws,cL(xi)∇ws,cL(xj))

(5)

To compute (5), in our case we can resort to the second-order
Taylor series expansion to derive the approximation below
(detailed in Sec. 2 of the supplementary material):

E(∇ws,cL(xi)∇ws,cL(xj)) ≈

h(s)(xi)h
(s)(xj)

[ (K − 1)2

K2
+
K − 1

3K3

L+1∑
t=1

h(t)(xi)h
(t)(xj)

] (6)

There remains to calculate h(t)(xi)h
(t)(xj) in (6). In

this case, [73, Lemma 3.b] has proved that the expec-
tation of h(s)(xi)h

(s)(xj) w.r.t the randomly initialized

weights between the input and hidden layer satisfies
E(h(s)(xi)h

(s)(xj)) ≈ 1
4 and E(h(s)(xi)

2h(s)(xj)
2) ≈ 1

16 .
Thus, by definition of ||∇wcL||22 in (4) and (5), we yield:

E(in)(||∇wcL||
2
2) ≈ N2

in

[
(L+ 1)(

(K − 1)2

4K2
+

(K − 1)(L+ 1)

48K3
)
]

, N2
in ·Q

(7)
Since L,K above are both fixed, Q is a constant. As a
result, (7) shows that for the self-supervised learning of
SSD, E(in)(||∇wc

L||22) is roughly proportional to N2
in. Like-

wise, we can also derive that the expectation of outliers’
gradient magnitude is E(out)(||∇wc

L||22) = N2
out · Q. Since

Nin � Nout is a indispensable premise for the OD task, we
have E(in)(||∇wc

L||22) � E(out)(||∇wc
L||22), which leads

to an interesting conclusion: Although inliers and outliers
are equally used for the self-supervised learning of SSD,
the gradients contributed by inliers are much more impor-
tant than outliers. Since those back-propagated gradients
are used to train SSD, the theoretical analysis leads to an
underlying property: SSD is inclined to prioritize inliers during
self-supervised learning, which is named inlier priority in this
paper. Such a property implies that inliers and outliers
behave differently in self-supervised learning, which makes
it possible to establish an end-to-end OD solution. Since
it is intractable to compute E(h(t)(xi)h

(t)(xj)) for more
complex SSD, we will further validate inlier priority by
empirical validations in the next section.

3.3.3 Empirical Validations

To further validate the property of inlier priority empirically,
we propose to calculate a more direct indicator named
“de facto update” for inliers and outliers respectively: In
addition to gradient magnitude that we have considered in
previous theoretical analysis, another important attribute of
gradient vectors is gradient direction. As illustrated by Fig.
4a, consider xi from a batch of dataX (we slightly abuse the
notation of X here). The negative gradient −∇θL(xi) is the
fastest network updating direction to reduce xi’s loss. How-
ever, the network weights θ are actually updated by the av-
eraged negative gradient of the entire batchX ,−∇θL(X) =
− 1

N

∑
i∇θL(xi). Thus, the actual updating direction at

each iteration is usually different from the best updating
direction for each individual datum. To measure the actual
gradient magnitude that xi obtains along its best direction
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Fig. 5: Normalized histograms of inliers/outliers’ Sgtp(x). The class used as inliers is in brackets.

for loss reduction from−∇θL(X), we introduce the concept
de facto update, which is computed by projecting ∇θL(X)

onto the direction of ∇θL(xi): di = ∇θL(X) · ∇θL(xi)
||∇θL(xi)|| .

For example, as shown in Fig. 4a, the de facto update d1
and d2 reflect how much effort the network will devote to
reduce the training loss of x1 and x2 respectively. De facto
update can be viewed as an even more direct indicator of
data’s priority during training. In our case, we still take the
gradients w.r.t. the weights between SSD’s penultimate and
softmax layer as an example. Under the setup in Sec. 4.1, we
calculate the average de facto update for inliers and outliers
respectively, and visualize typical results of de facto update
on several image benchmarks in Fig. 4b-4d: As can be seen
from the results, despite being close at the beginning, the
average de facto update of inliers becomes evidently higher
than outliers as the training continues, which justifies that
SSD will bias towards inliers’ best updating directions.

3.3.4 Baseline Outlier Score and Additional Remarks
Having illustrated inlier priority both theoretically and em-
pirically, it can be expected that inliers are likely to achieve
better training performance than outliers on a SSD after the
self-supervised learning. In other words, SSD will prioritize
reducing inliers’ loss, which suggests that it is possible to
discriminate outliers directly by each datum’s loss value
after training. To be more specific, for an image x(y), we
note that the calculation of its cross entropy loss only de-
pends on its ground truth class probability P (y)(x(y)|θ) that
corresponds to its pseudo class label y. Thus, we propose
Ground Truth Probability (GTP) score Sgtp(x) that averages
P (y)(x(y)|θ) for all K operations to measure outlierness:

Sgtp(x) =
1

K

K∑
y=1

1>y ·P(x(y)|θ) = 1

K

K∑
y=1

P (y)(x(y)|θ) (8)

where 1y denotes the one-hot vector with the y-th element
to be 1. To validate whether GTP score is a plausible way
to measure outlierness, we calculate the Sgtp(x) on image
benchmarks and visualize the accumulated histograms for
inliers and outliers respectively (note that histograms are
normalized for better visualization). Representative results
are shown in Fig. 5a-5d, and the score distributions of inliers
and outliers are observed to be readily separable. Thus, GTP
score can be a feasible baseline score for end-to-end OD.
In addition, we would also like to point out the relation
between inlier priority and representation learning: In deep
OD task like outlier image removal, the difference between

outliers and inliers lie in their semantics, e.g. high-level
structure and appearance. To encourage the semantic sim-
ilarity within inliers and maximize the semantic difference
between inliers and outliers, it is necessary to learn good
representations with rich semantics in the first place. Thus,
a learning task that can yield semantically meaningful rep-
resentations is the foundation for inliers to be semantically
similar and joint their efforts into a priority against outliers.

3.4 Network Uncertainty As an Outlierness Measure

3.4.1 Motivation
SSD+GTP score provides a baseline end-to-end OD solution.
However, it is imperfect and still has room for improvement,
especially considering that the proposed self-supervised
learning is not as precise as the classic supervised learning
with human annotations: The data operation sometimes
may not be able to transform the original image into an
actual new one, e.g. a digit “8” is still itself after flipping is
performed. Therefore, labels assigned to pseudo classes can
be inaccurate. Since the calculation of GTP score in (8) relies
on the pseudo class label y, such inaccurate labeling may
undermine the GTP score’s effectiveness to discriminate
outliers. Motivated by this problem, we intend to design
a new outlierness measure that is independent of pseudo
class labels, so as to exploit the possibility to further improve
end-to-end OD performance. Besides, when compared with
other outlierness measures like density or proximity, un-
certainty is usually directly optimized during the training
of DNN, while other measures are not an explicit goal
of the optimization. Therefore, we believe that network
uncertainty can be a more direct indicator of inlier priority
than other traditional measures. To this end, network uncer-
tainty comes into our sight, since it is exactly an orthogonal
attribute to DNN’s classification accuracy [74]. As previous
works basically discuss this concept in the context of DNN’s
prediction confidence, it is interesting to explore whether
network uncertainty can be used for end-to-end OD.

3.4.2 A Demonstration Experiment
We carry out a simple demonstration experiment to shed
light on this issue. For visualization, we generate 2D data
with different degree of outlierness (detailed in Sec. 3 in
supplementary material): The generated data (dots in Fig. 6)
exhibit a larger dispersion as their coordinate on x-axis, xi,
gets more distant from the origin of x-axis, which enables
data on two ends to show larger outlierness. To calculate
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Fig. 6: The uncertainty of a regression network.

network uncertainty, we introduce a regression task that
predicts y-axis coordinate yi by corresponding xi. Note
that the regression task can be viewed as a self-supervised
learning task, since we actually intend to infer the missing
coordinate yi by the incomplete data x̃i = [xi] like the
masking mechanism [58]. The regression task is performed
by training a simple neural network with the generated 2D
data, and we estimate the uncertainty of neural network by
the popular MC-Dropout method [64]. As it is shown in
Fig. 6, it is easy to discover that the network uncertainty
(highlighted orange region) is positively correlated to the
outlierness of data. In other words, the experiment demon-
strates some interesting connections among network uncer-
tainty, OD and self-supervised learning: The uncertainty of a
neural network, which is trained to accomplish a self-supervised
learning task (not OD itself), actually serves as a fairly effective
way to measure data’s outlierness. Besides, it is also worth
noting that network uncertainty is not relevant to the label
yi. This facilitates it to be more robust to label noises in self-
supervised learning, just as we discussed in Sec. 3.4.1.

3.4.3 Network Uncertainty based Outlier Scores
As reviewed in Sec. 2.3, the uncertainty of DNN can
be estimated by several ways, which can be categorized
into Bayesian methods and non-Bayesian methods. Since
Bayesian methods are usually more complicated and require
more modifications to DNN itself, we focus on non-Bayesian
methods when designing outlier scores. The following net-
work uncertainty based scores are designed: (1) Maximum
Probability (MP) score Smp(x). Smp(x) utilizes the maxi-
mum probability (i.e. prediction probability) output by the
Softmax layer of SSD, which has proved to be a simple but
strong baseline for uncertainty estimation [66], [67]:

Smp(x) =
1

K

K∑
y=1

maxP(x(y)|θ) = 1

K

K∑
y=1

max
t
P (t)(x(y)|θ) (9)

(2) MC-Dropout (MCD) score Smcd(x). MC-Dropout keeps
the dropout layers functional during inference, and calcu-
lates the first and second-order moment of DNN’s outputs
by several forward passes [64]. Since the maximum output
probability and variance in DNN’s outputs are both able to
reflect DNN’s uncertainty, we devise Smcd(x) as follows, so

as to adapt it to OD task (Mean(·) and V ar(·) refers to the
mean and variance of multiple forward passes):

Smcd(x) =
1

K

K∑
y=1

−V ar(maxP(x(y)|θ)) +Mean(maxP(x(y)|θ))

(10)
(3) Negative Entropy (NE) based score Sne(x). Information
entropy (i.e. Shannon entropy) has constantly been used
for measuring information and uncertainty embedded in
data. Thus, we design Sne(x) to be computing the negative
entropy of SSD’s output probability distribution P(x(y)|θ):

Sne(x) =
1

K

K∑
y=1

K∑
t=1

P (t)(x(y)|θ) log(P (t)(x(y)|θ)) (11)

In addition to scores above, other network uncertainty based
scores can also be explored. Our later evaluations show that
network uncertainty based scores typically work better than
the baseline outlier score Sgtp.

3.5 Score Refinement of Discriminative E3Outlier
3.5.1 Motivation
Although components presented above have constituted a
fully-functional end-to-end OD solution, it is still possible
to improve discriminative E3Outlier’s performance. As we
have demonstrated how inlier priority and network uncer-
tainty enable end-to-end OD, they should also be considered
as the origin for performance improvement. Intuitively, a
better OD performance essentially suggests that the priority
of inliers is magnified, while it can also be accomplished by
better uncertainty estimation. Inspired by such instincts, we
propose two types of strategies to refine outlier scores.

3.5.2 Re-weighting Strategy
Our first instinct is to make SSD further prioritize inliers
during training. Nevertheless, it is noted that inliers and
outliers are indiscriminately fed into SSD at the very begin-
ning of training, i.e. inliers and outliers are equally weighted
by 1. Having revealed the role of inlier priority in OD, it
is undoubted that this default initialization is not optimal:
We can assign inliers with larger weights right before the
beginning of SSD’s training, which justifies the introduction
of a re-weighting scheme. Since given data are completely
unlabeled in OD, how and when to re-weight those unla-
beled data for OD are key issues that we have to answer. As
to how to re-weight, our solution is to utilize scores yielded
by the proposed outlierness measure as weights, which have
already achieved far better OD performance than existing
methods. To be more specific, we can normalize scores into
non-negative weights w1, · · ·wN that satisfy

∑N
i=1 wi = 1,

and modify the objective function in (1) into the form below:

min
θ

N∑
i=1

wiLSS(xi|θ) (12)

As for when to re-weight, since scores are only accessible
after self-supervised learning begins, we can perform re-
weighting during or after SSD’s training. Accordingly, we
propose online re-weighting and reboot re-weighting strat-
egy: Online re-weighting strategy will update the weights
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at the end of every epoch, and only one SSD is trained.
By contrast, reboot re-weighting trains two SSD models:
The first SSD is trained by a standard procedure, while the
scores yielded by the first SSD are used as fixed weights
to train the second SSD. The full algorithms are detailed in
Algorithm 1 and Algorithm 2 in Sec. 4 of supplementary
material. Our evaluations show that both algorithms can
improve E3Outlier’s performance.

3.5.3 Ensemble Strategy
In addition to the re-weighting strategy, another instinct is to
improve uncertainty estimation for better OD performance.
Since a generic strategy that can be easily embedded into
the model is always preferred, we introduce the ensemble
strategy into the score refinement stage. Ensemble is a
widely-used technique in machine learning that combines
multiple models into a stronger one. It is shown to be a
powerful tool to improve the predictive performance [75],
and recent works also demonstrate that an ensemble of
DNNs can be highly efficient for producing good model
uncertainty estimates [65], [67]. Specifically, we first cre-
ate multiple SSD models M1, · · · ,Me in a certain way,
where e > 1 is the number of SSD models. For exam-
ple, we can initialize SSD models with different random
seeds, or adopt several different network architectures as
different SSD models. After self-supervised learning, we
simply average the outputs of different SSD models by
P̄(x

(y)
i |θ) = 1

e

∑e
j=1 Pj(x

(y)
i |θ), where Pj(x

(y)
i |θ) is the

outputs of jth SSD model. Afterwards, we can calculate any
network uncertainty based score with P̄(x

(y)
i |θ). Note that

the ensemble process can be readily paralleled for potential
acceleration. Our later empirical evaluations show that such
simple ensemble technique almost consistently improves
the OD performance when compared with the case where
a single SSD model is used.

3.5.4 Joint Score Refinement
Two aforementioned strategies are both able to yield better
outlier scores, but it should be noted that they actually refine
outlier scores from different views: The re-weighting strat-
egy strengthens the inlier priority during self-supervised
learning, while the ensemble strategy aims to improve the
estimation of network uncertainty. In other words, two
strategies exploit non-overlapping facets for score refine-
ment. Thus, using a joint strategy of the re-weighting and
ensemble to achieve even better OD performance is natural.
In this paper, we devise the final score refinement stage
by combining the reboot re-weighting strategy with the
ensemble strategy (shown in Algorithm 3 in Sec. 4 of the
supplementary material). Note that this is not the only
form to combine re-weighting and ensemble, e.g. combining
online re-weighting with the ensemble is also possible.

3.6 Other Learning Paradigms for E3Outlier
In previous sections, we have demonstrated the way to
leverage discriminative self-supervised learning to perform
deep OD. As the way to introduce self-supervision is not
limited to the discriminative learning paradigm, it is natural
for us to explore other learning paradigms for E3Outlier,
which brings two benefits: First, more available learning

paradigms enable E3Outlier to be more flexible when deal-
ing with different application scenarios. Second, emerging
self-supervised learning paradigms like contrastive learning
also facilitate E3Outlier to further exploit its potential for
deep OD. Thus, this section will detail our solution to apply
generative and contrastive learning paradigms to E3Outlier.

3.6.1 Generative E3Outlier
Generative learning paradigm is not new, because AE based
reconstruction is exactly the most frequently-used method
in existing deep OD solutions so far. However, as illustrated
in Sec. 3.2.3, existing generative solutions often perform
unsatisfactorily. As self-supervision is shown to be surpris-
ingly effective in discriminative E3Outlier, it is instinctive
for us to explore whether self-supervision can also improve the
performance of generative deep OD. Specifically, our solution
is to add richer self-supervision information into the gener-
ation process to avoid simple reconstruction of the inputs.
Inspired by the fact that data operations can provide rich
self-supervision signal in SSD, we propose the generative
self-supervised learning (GSS) paradigm below: Consider a
data operation set with Kg operations Og = {Og(·|y)}Kg

y=1.
The data operations in Og can be defined by various ways,
such as certain transformations or fetching a specific part
or modality of the input data. Then, we draw two different
operations Og(·|y1) and Og(·|y2) from Og . Given an input
data x, two operations are required to satisfy:

Og(x|y1) 6= Og(x|y2), y1 6= y2 (13)

Then, a generative DNN G (e.g. AE, UNet [76] or GANs) is
trained to generate Og(x|y2) by taking Og(x|y1) as the in-
put, which is equivalent to minimizing the objective below:

LGSS(y1, y2) =
1

N

N∑
i=1

||G(Og(xi|y1))−Og(xi|y2)||22 (14)

It is easy to note that when Eq. (13) is not satisfied, Eq. (14)
will degrade into plain reconstruction. When G has been
trained, one can simply obtain an outlier score of x based
on the MSE loss of generation:

Sg(x|y1, y2) = −||G(Og(x|y1))−Og(x|y2)||22 (15)

Since there exist different ways to select operations, it is
natural to train the model and compute final outlier score
by a combination of different y1, y2 configurations:

LGSS =
∑
y1

∑
y2

LGSS(y1, y2),

Sg(x) =
∑
y1

∑
y2

Sg(x|y1, y2)
(16)

Compared with the plain reconstruction adopted by AE
based deep OD methods, the key to our generative E3Outlier
is to make DNN generate a different datum obtained by
a non-identical operation, which makes the learning task
more challenging for DNNs. This not only avoids the
DNN to simply memorize the low-level details, but also
encourages the DNN to consider high-level semantics by
learning the correlations of two different data, which can be
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viewed as valuable self-supervision information. Our later
evaluations show that generative E3Outlier can produce
tangible performance improvement when it shares the same
generative DNN with other reconstruction based deep OD
solutions. More importantly, generative E3Outlier can be
readily applied to some important scenarios where the input
data can be decomposed into multiple views or modalities.
For example, video data are usually considered from the
view of both appearance and motion. In those cases, the
correspondence between different data views/modalities
is valuable self-supervision signal in itself, and generative
E3Outlier provides a convenient and straightforward way to
exploit such semantics. As a demonstration, we will show
how to design a new unsupervised video abnormal event
detection solution by generative E3Outlier in Sec. 4.3.2.

3.6.2 Contrastive E3Outlier

It is easy to notice that the performance of current deep OD
solutions, including the proposed discriminative E3Outlier,
suffers from evidently inferior performance on colored im-
age datasets (e.g. CIFAR10) when compared with compara-
tively simple gray-scale image datasets (e.g. MNIST). Mean-
while, we also note that color based operations (e.g. color
jittering and RGB-to-gray transformation) play an important
role in many vision tasks. To further exploit color informa-
tion and enhance the capability to handle more ubiquitous
colored images in practical applications, we leverage the
emerging contrastive learning paradigm, which is shown to
be highly effective in unsupervised representation learning
of real-world colored images, to provide self-supervision in
deep OD and design contrastive E3Outlier. The core idea of
contrastive learning is to learn meaningful representations
by making DNNs compare a pair of data drawn from the
unlabeled dataset. We choose one of the most representative
contrastive learning method, SimCLR [77], as the founda-
tion for the proposed contrastive E3Outlier. Specifically, a
contrastive loss for a datum x is defined as follows:

Lcl(x, X
+, X−) =

− 1

|X+| log
∑

x′∈X+ exp(sim(z(x), z(x′))/τ)∑
x′∈X+∪X− exp(sim(z(x), z(x′))/τ)

(17)

where X+/X− denote the set with data that can form a
positive/negative pair with x, and sim(·, ·) is a similarity
measure like cosine similarity. | · | is the cardinality of the
set, and z(x) is the projection yielded by feeding DNN’s
learned representation f(x) into a projection layer g(·):
z(x) = g(f(x)). τ is a hyperparameter. Next, the issue
is to construct positive and negative data pairs to enable
the calculation of Eq. (17). To this end, we introduce a
random augmentation set A, which contains augmentation
operations that is composed of color jittering, RGB-to-gray
transformation and image crop with random parameteri-
zation. Each time two independent random augmentation
A1 and A2 are drawn from A. After that, the data pair of
augmented data A1(x) and A2(x) are viewed as a positive
pair, while any other pair is viewed as negative. The goal of
contrastive loss defined in Eq. (17) is to yield similar repre-
sentations for a positive data pair, and make representations
of a negative pair dissimilar. Given a mini-batch data set

B drawn from the unlabeled dataset, SimCLR defined the
following training objective to perform contrastive learning:

Lscl(B,A1, A2) =
1

2|B|

|B|∑
i=1

(Lcl(A1(xi), {A2(xi)}, B̂−i)+

Lcl(A2(xi), {A1(xi)}, B̂−i))

(18)

where we define B̂−i = {A1(xj)}j 6=i ∪ {A2(xj)}j 6=i. Some
recent works [77], [78] point out that some data operations
(e.g. 90 degree rotation) can be used to generate negative
pairs as they produce very different data from the original
one. This is also verified in discriminative E3Outlier, since
those data operations are often likely to produce pseudo
classes that are readily separable. Following such an ob-
servation, we collect an operation set Oc = {Oc(·|y)}Kc

y=1

with Kc operations (including one identity transformation),
and expand the mini-batch B into B′ = Oc(B|1) ∪ · · · ∪
Oc(B|Kc), where the data set Oc(B|y) = {Oc(x|y)|x ∈ B}.
Since B′ can be viewed as a data set with Kc pseudo
classes and discriminative E3Outlier works well in deep
OD, we substitute B by B′ into Eq. (18) for training, and
make DNN learn to classify those pseudo classes by an
additional discriminative module and the cross-entropy loss
Lcls(B

′), so as to produce more meaningful representations.
In this way, the contrastive self-supervised learning (CSS) of
E3Outlier can be performed by the joint loss below:

LCSS = Lscl(B
′, A1, A2) + Lcls(B

′) (19)

After training, we design a simple but effective outlier score
based on inner product of learned representations: For the
datum x

(y)
i = Oc(xi|y) obtained by imposing the y-th

operation in Oc on xi, its outlier score Sc(x
(y)
i ) is given by:

Sc(x
(y)
i ) =

1

Z
(y)
scl

max
j 6=i

f>(x
(y)
i ) · f(x(y)

j ) (20)

where Z(y)
scl is the normalization term computed as follows:

Z
(y)
scl = (

1

N

N∑
i=1

||f(x(y)
i )||)−1 (21)

In Eq. (20), the score actually computes the maximum inner
product between the learned representations of x

(y)
i and

other data yielded by operation O(·|y), so as to measure
how similar x(y)

i is to the rest of data. With multiple opera-
tions in Oc, the final outlier score can be computed by:

Sc(xi) =
Kc∑
y=1

Sc(x
(y)
i ) (22)

Just like that contrastive learning paradigm significantly
improves the performance of self-supervised learning, our
later empirical evaluations show that contrastive E3Outlier
also advances the deep OD performance by a notable mar-
gin on those colored datasets that are relatively difficult
for previous generative and discriminative E3Outlier. As a
summary, by designing generative learning and contrastive
learning based solutions, we enable E3Outlier to be a more
flexible and stronger deep OD framework.
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Fig. 7: AUROC comparison of OD methods under different outlier ratios.

4 EXPERIMENTS

4.1 Experimental Settings

4.1.1 Benchmark Datasets and Evaluation

To validate the effectiveness of the proposed framework,
we conduct extensive experiments on five frequently-used
public image benchmarks: MNIST (MST) [79], Fashion-
MNIST (FMST) [80], CIFAR10 (C10) [81], SVHN (SH) [82],
CIFAR100 (C100) [81]. We follow the standard procedure,
which is shared by previous image outlier removal works
like [8], [9], [46], to construct a noisy image set with outliers:
Given a standard image benchmark, all images from a class
with one common semantic concept (e.g. “horse”, “bag”) are
retrieved as inliers, while outliers are randomly sampled
from the rest of classes by an outlier ratio ρ. We vary ρ
from 5% to 25% by a step of 5%. The assigned inlier/outlier
labels are strictly unknown to OD methods and only used
for evaluation. Each class of a benchmark is used as inliers
in turn, and the performance on all classes is averaged as the
overall OD performance on this benchmark dataset. Since all
images are viewed as unlabeled in OD, we do not use the
split of train/test set and merge them for experiments. Note
that for CIFAR100 dataset, we uses 20 superclasses instead
of the original 100 classes to ensure that the constructed
noisy image set contains sufficient data for DNN’s training,
and it can also test the OD performance when inliers have
multiple subclasses (each superclass in CIFAR100 contains
5 classes). All experiments are repeated for 5 times with
different random seeds, so as to yield the average results.
Raw pixels are directly used as inputs with their intensity
normalized into [−1, 1]. As for evaluation, we adopt the
commonly-used Area under the Receiver Operating Charac-
teristic curve (AUROC) and Area under the Precision-Recall
curve (AUPR) as threshold-independent metrics [83].

4.1.2 Compared Methods

We extensively compare generative E3Outlier (E3Out.
(G)), discriminative E3Outlier (E3Out. (D)) and contrastive
E3Outlier (E3Out. (C)) with baselines and existing state-of-
the-art DNN based OD methods in literature: (1) Convolu-
tional Auto-Encoder (CAE) [84]. CAE is the most prevalent
DNN type to deal with image data in many unsupervised
learning tasks. Here it serves as an end-to-end baseline,
which directly uses CAE’s reconstruction loss to perform

deep outlier removal. (2) CAE+Isolation Forest (CAE+IF).
IF [40] is a classic OD method with wide popularity, so
we combine it with CAE as the baseline of two-stage
OD approaches. Specifically, CAE+IF feeds CAE’s learned
representations from its intermediate hidden layer into IF
to perform OD. (3) SSD+IF. It shares E3Outlier’s SSD part
but feeds SSD’s learned representations into an IF model
to perform OD. SSD+IF serves as a two-stage baseline to
compare against the proposed end-to-end E3Outlier. (4) Dis-
criminative Reconstruction based Auto-Encoder (DRAE) [9].
DRAE discriminates outliers by thresholding CAE’s recon-
struction loss with a self-adaptive scheme, which is in turn
integrated into the loss function to refine the outlier removal
performance. (5) Deep Structured Energy based Models
(DSEBM) [45]. DSEBM uses an energy based function and
score matching technique to estimate the probability that
a datum fits the data distribution. (6) Robust Deep Auto-
Encoder (RDAE) [46]. RDAE synthesizes CAE and RPCA,
and it iteratively decomposes unlabeled data into a low-
rank part and a sparse error part for outlier removal. (7)
Deep Auto-encoding Gaussian Mixture Model (DAGMM)
[48]. DAGMM embeds a GMM parameter estimation net-
work into CAE, which realizes end-to-end OD by perform-
ing representation learning and fitting a GMM simultane-
ously. (8) Multiple-Objective Generative Adversarial Active
Learning (MOGAAL) [50]. MOGAAL attempts to generate
pseudo outliers that are distributed around given unlabeled
data with modified GANs and active learning, so as to
transform OD into a supervised binary classification prob-
lem. (9) Robust Subspace Recovery based AE (RSRAE) [52].
RSRAE is the latest method that improves OD performance
by learning to recover the underlying data manifold in a
subspace while performing AE’s reconstruction. For RSRAE,
the reconstruction loss and RSR loss are optimized in a
seprated manner. In addition to deep solutions, we also
include the following baseline solutions for a more com-
prehensive comparison: (10) Two-stage solutions based on
pre-trained DNN and the classic OD model. DNN models
pre-trained on large-scale generic datasets prove to be an
effective tool for feature extraction. Thus, to design a two-
stage solution, we use a ResNet50 model pre-trained on
ImageNet dataset as feature extractor, and the extracted
features are then fed into a classic OD model. IF and the
classic Local Outlier Factor (LoF) are exploited here. Due to
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TABLE 1: OD performance comparison (in %) in terms of AUROC (Area Under ROC curve, shorted as ROC), AUPR-In
(Area under PR curve with inliers to be the positive class, shorted as PR-I) and AUPR-Out (Area under PR curve with
outliers to be the positive class, shorted as PR-O). Each benchmark shows the case where ρ = 10% and ρ = 20%. Note that
contrastive E3Outlier is only used for benchmark datasets with colored images (CIFAR10/SVHN/CIFAR100), and the raw
performance without score refinement is compared for fairness. The best performer is shown in bold font.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 10%

CAE 68.0 92.0 32.9 70.3 94.3 29.3 55.8 91.0 14.4 51.2 90.3 10.6 55.2 91.0 14.5
CAE+IF 85.5 97.8 49.0 82.3 97.2 40.3 54.1 90.2 13.7 55.0 91.4 11.9 55.0 90.7 13.8
DRAE 66.9 93.0 30.5 67.1 93.9 25.5 56.0 90.7 14.7 51.0 90.3 10.5 55.6 90.9 15.0

DSEBM 60.5 91.6 23.0 53.2 88.9 19.7 60.2 92.3 14.7 50.0 90.0 10.1 59.2 92.2 16.2
RDAE 71.8 93.1 35.8 75.3 95.8 31.7 55.4 90.7 14.9 52.1 90.6 10.8 55.6 90.9 15.0

DAGMM 64.0 92.9 26.6 64.0 92.7 30.3 56.1 91.3 15.6 50.0 90.0 19.3 54.9 91.1 14.2
MOGAAL 30.9 78.8 15.2 22.8 74.8 14.8 56.2 91.1 13.6 49.0 89.7 9.8 53.2 90.4 12.6

RSRAE 84.8 97.4 45.4 78.3 96.2 37.0 56.6 91.4 14.0 51.5 90.3 10.6 57.1 91.6 14.1
Res50+LoF 71.2 97.5 26.6 57.8 96.2 16.9 59.9 91.4 17.4 61.3 90.3 14.0 69.1 94.6 22.2
Res50+IF 83.4 97.5 43.3 82.7 97.3 43.8 64.8 93.8 17.9 57.4 92.0 12.8 67.5 94.3 21.0

SSD+IF 93.8 99.2 68.7 90.6 98.5 68.6 64.0 93.5 18.3 73.4 95.9 22.0 55.6 91.5 13.0
E3Out. (G) 86.7 96.4 60.3 89.6 98.5 61.6 66.3 93.5 20.0 63.6 93.9 15.0 61.2 92.4 16.7
E3Out. (D) 94.1 99.3 67.5 93.3 99.0 75.9 83.5 97.5 43.4 86.0 98.0 36.7 79.2 96.8 33.3
E3Out. (C) - - - - - - 89.0 98.5 53.2 90.1 98.5 51.3 84.1 97.8 38.0

ρ = 20%

CAE 64.0 82.7 40.7 64.4 85.3 36.8 54.7 81.6 25.5 50.7 80.2 20.7 54.4 81.7 25.6
CAE+IF 81.5 93.6 57.2 77.8 92.2 49.0 53.8 80.7 25.3 54.0 82.0 22.4 53.5 80.9 25.1
DRAE 67.3 86.6 42.5 65.7 86.9 36.6 55.6 81.7 26.8 50.6 80.4 20.5 55.5 81.8 27.0

DSEBM 56.3 81.2 32.3 53.1 79.6 31.7 61.4 85.2 27.8 50.2 80.3 20.2 57.9 83.7 27.8
RDAE 67.0 89.2 43.2 70.9 89.2 41.4 54.2 81.0 25.7 51.8 80.9 21.1 54.9 81.5 26.5

DAGMM 65.9 86.7 41.3 66.0 86.7 43.5 54.7 81.8 26.3 50.0 79.9 29.6 53.8 81.5 24.7
MOGAAL 37.8 70.6 28.0 34.0 66.6 28.3 55.7 82.0 25.0 49.6 79.8 19.8 53.1 80.9 24.4

RSRAE 78.9 91.3 53.0 74.5 90.4 46.3 55.6 82.1 25.8 51.1 80.3 21.0 56.3 82.7 25.2
Res50+LoF 62.4 84.9 31.0 53.4 80.3 24.9 63.6 84.9 27.9 59.3 85.0 25.2 65.3 87.5 32.6
Res50+IF 79.8 93.6 52.1 80.7 93.5 55.0 63.4 86.6 30.4 56.8 83.3 24.2 64.7 87.1 32.4

SSD+IF 90.5 97.3 71.0 87.6 95.6 71.4 60.2 85.0 28.3 69.2 89.5 33.7 54.3 82.1 23.4
E3Out. (G) 83.2 90.4 67.9 85.3 95.2 66.4 64.5 85.7 33.0 62.8 86.8 27.9 59.6 83.8 28.6
E3Out. (D) 91.3 97.6 72.3 91.2 97.1 78.9 79.3 93.1 52.7 81.0 93.4 47.0 77.0 92.4 46.5
E3Out. (C) - - - - - - 83.6 94.8 59.0 84.8 94.9 57.6 82.9 95.1 53.0

page limit, implementation details are provided in Sec. 5 of
the supplementary material. All of our codes and results can
be verified at https://github.com/demonzyj56/E3Outlier.

4.2 Experimental Results

4.2.1 Raw OD Performance Comparison

Due to the space limit, we report numerical results under
ρ = 10% and 20% in Table 1, while the AUROC comparison
under different outlier ratios are shown in Fig. 7. From
those results, we can obtain the following observations: (1)
First of all, the proposed E3Outlier framework possesses
an evident advantage against existing state-of-the-art DNN
based OD methods and baselines in terms of all evaluation
metrics. Taking discriminative E3Outlier as an example, it
outperforms the best performer among state-of-the-art DNN
based OD methods and baselines by a considerable 8%-
20% AUROC on different benchmark datasets. In particular,
it has realized a performance leap on CIFAR10, SVHN
and CIFAR100, which are generally acknowledged to be
challenging benchmarks for unsupervised learning tasks
like deep outlier removal or clustering. Meanwhile, with the
same CAE as backbone, the proposed generative E3Outlier is
able to achieve evidently superior performance to existing
CAE based deep OD solutions. Specifically, although it is

inferior to its discriminative and contrastive counterparts,
generative E3Outlier consistently outperforms all AE based
deep OD solutions in terms of AUROC, while it also yields
comparable or better AUPR-In and AUPR-Out performance.
Such improvement further justifies the effectiveness of in-
troducing richer self-supervision information, and in later
sections we show that generative E3Outlier also enables us
to flexibly handle other deep OD applications. Next, the
proposed contrastive E3Outlier is able to produce a signifi-
cant performance gain (about 4%-6% AUROC) on colored
datasets (CIFAR10/SVHN/CIFAR100) that are relatively
difficult for its discriminative and generative counterparts,
and it suggests that the potential of E3Outlier can be further
exploited by introducing more advanced self-supervised
learning paradigms. Thus, the above observations have
justified E3Outlier as a highly effective framework for DNN
based OD. (2) Second, we notice that the baseline OD
solutions that combine the classic OD model and features
extracted from pre-trained ResNet50 model (Res50+LoF and
Res50+IF) can indeed produce better performance than pre-
vious end-to-end OD solutions in many cases, which verifies
the importance of the good representation. However, there
is still a large performance gap between such two-stage
solutions and the proposed deep OD framework, especially
discriminative and contrastive E3Outlier. Thus, it further
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TABLE 2: Performance of discriminative E3Outlier (in %) before and after joint score refinement (JSR) in terms of Area
Under ROC curve, PR curve with inliers to be the positive class (PR-I) and PR curve with outliers to be the positive class
(PR-O). Each benchmark shows the case where ρ = 10% and ρ = 20% due to the space limit.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 10%

E3Out. 94.1 99.3 67.5 93.3 99.0 75.9 83.5 97.5 43.4 86.0 98.0 36.7 79.2 96.8 33.3
E3Out.+JSR 94.9 99.4 71.0 93.5 99.0 77.2 84.7 97.7 45.7 87.1 98.2 37.7 81.3 97.2 37.0

ρ = 20%

E3Out. 91.3 97.6 72.3 91.2 97.1 78.9 79.3 93.1 52.7 81.0 93.4 47.0 77.0 92.4 46.5
E3Out.+JSR 92.9 98.1 76.3 92.1 97.4 81.9 80.3 93.5 54.5 82.0 94.2 47.9 79.1 93.1 49.9

demonstrates the effectiveness of the proposed deep OD
framework. (3) Third, it is interesting to note that two-
stage OD approaches can be more effective than previ-
ous end-to-end OD approaches. Specifically, the two-stage
counterpart of discriminative E3Outlier SSD+IF achieves
fairly close performance to discriminative E3Outlier on rel-
atively simple gray-scale image datasets (MNIST/Fashion-
MNIST). Meanwhile, CAE based end-to-end OD solutions
(DRAE/DSEBM/DAGMM/RSRAE) cannot constantly out-
perform their two-stage counterparts (CAE+IF/RDAE), and
CAE+IF even performs much better than some CAE based
end-to-end solutions on MNIST/Fashion-MNIST. Neverthe-
less, as shown in Fig. 7a-Fig. 7e, the proposed discriminative
E3Outlier almost defeats its two-stage baseline SSD+IF in
all experiments, and it suffers from evidently worse per-
formance (i.e. over 10% AUROC loss) on difficult datasets
like CIFAR10/SVHN/CIFAR100. (4) Among existing end-
to-end OD methods, we notice that although recent end-to-
end DNN based OD methods (RSRAE) are indeed making
progress on relatively simple benchmarks like MNIST and
Fashion-MNIST, their performance on difficult datasets like
CIFAR10 is still as unsatisfactory as previous counterparts.
Besides, MOGAAL performs poorly in almost all cases,
which suggests that generating proper pseudo outliers are s
till very difficult for deep OD by now.

4.2.2 Score Refinement
In this section, we validate the effectiveness of score re-
finement for discriminative E3Outlier. As shown in Table
2, JSR enables consistent performance improvement under
different outlier ratios and all evaluation metrics. To show
the effect of each score refinement strategy, we further
compare the OD performance of five cases in terms of
AUROC: Baseline using no score refinement (BAS), using
the online re-weighting strategy only (ORW), with the re-
boot re-weighting strategy only (RRW), using the ensemble
strategy only (ENS) and using the joint score refinement
(JSR), under ρ = 10% with default NE score for discrim-
inative E3Outlier. We report the results in Table 3, from
which the following facts are drawn: First, when compared
with the baseline (BAS), score refinement strategies are
able to produce performance gain on all benchmarks by
up to 2.1% AUROC gain. The improvement tends to be
more tangible on comparatively difficult benchmarks like
CIFAR100. Besides, under other outlier ratios, using score
refinement also produces stable performance improvement
(1% to 2% AUROC) on difficult benchmarks. Second, RRW

TABLE 3: comparison of score refinement strategies (in %).

CONFIG. MST FMST C10 SH C100
BAS 94.1 93.3 83.5 86.0 79.2

BAS+ORW 94.4 93.6 84.1 86.7 80.3
BAS+RRW 94.6 93.6 84.4 86.5 80.5
BAS+ENS 94.3 93.4 84.1 86.7 80.7
BAS+JSR 94.9 93.5 84.7 87.1 81.3

tends to be slightly better than ORW, while ORW enjoys
lower computational cost. Finally, the joint score refinement
(JSR) with both reboot re-weighting and ensemble is typi-
cally better than a single score refinement strategy, except for
the case Fashion-MNIST where JSR performs comparably to
other refinement strategies. We also discuss the parameters
in score refinement in Sec. 4 of supplementary material.

4.2.3 Discussion
In this section, we discuss several key factors in E3Outlier.
Similarly, we conduct experiments under ρ = 10% to show
the general trends. We investigate the following factors of
discriminative E3Outlier: (1) Outlier scores: We compare
four different outlier scores for discriminative E3Outlier,
i.e. GTP/MP/MCD/NE. As shown by Fig. 8a, uncertainty
based scores (MP/MCD/NE) basically prevail over the
baseline GTP score, which validates the advantages of
exploring network uncertainty as outlierness measure for
E3Outlier. Among uncertainty based outlier scores, MCD
and NE are prone to outperform the simplest MP. Although
MCD achieves the best performance on some benchmarks,
it requires multiple forward passes and tends to be less effi-
cient than NE. By contrast, NE consistently outperforms the
baseline by a notable margin, and it realizes a good trade-
off between performance and efficiency. (2) The network ar-
chitecture of SSD: With other settings fixed, we additionally
explore ResNet20/ResNet50 [19] and DenseNet40 [85] as the
backbone architecture for SSD (shown in Fig. 8b). Despite
of some differences, those frequently-used architectures ba-
sically perform satisfactorily. Interestingly, we note that a
more complex architecture (ResNet50/DenseNet40) tends to
be more effective on relatively complex datasets (CIFAR10,
SVHN and CIFAR100), but its performance is inferior on
simpler datasets. (3) Training epochs (see Fig. 8c): We mea-
sure the OD performance when the SSD is trained by differ-
ent epoch numbers to evaluate its impact on self-supervised
learning. In general, we notice that the OD performance is
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Fig. 8: Different factors’ influence on E3Outlier’s performance under ρ = 10%.

inclined to be improved at the initial stage of training (less
than d 250K e training epochs) and then reach a plateau. No
drastic performance changes are observed as the training
epochs continue to increase. (4) Pseudo label design. Since
the operation set is often constructed by a composite of
multiple types of transformations, it is natural to consider
a multi-label way to assign pseudo labels. To explore its
possibility, we assign each transformed datum with 5 labels
based on the performed transformations: Simple rotation
label (4 classes in total), translation label (3×3 = 9 classes in
total), irregular rotation label (8+1=9 classes in total), flip la-
bel (2 classes in total) and patch re-arranging label (23+1=24
classes in total). The DNN is equiped with 5 classification
heads to predict 5 labels, while the outlier score is com-
puted by averaging the outlier scores yielded by 5 heads.
We report the performance of such a multi-label setup in
Table 4, and the results suggest that it can yield slightly
better performance on most benchmark datasets. Thus, it is
possible to explore a more effective design of pseudo labels
for E3Outlier. For generative and contrastive E3Outlier, we
investigate two major factors: (1) Backbone architecture for
generative E3Outlier. In fact, one can explore different back-
bone architecture to implement the generative DNN G for
generative E3Outlier, and we test UNet as an example. As
shown in Table 5, the results suggest that UNet is also able
to yield fairly satisfactory OD performance, and we notice
that UNet performs evidently better than CAE on relatively
difficult datasets CIFAR10/SVHN/CIFAR100, while CAE
tends to be better on simpler MNIST/Fashion-MNIST. (2)
Classification loss Lcls for contrastive E3Outlier. It is noted
that the loss of classification Lcls when training the DNN
model of contrastive E3Outlier, and we also discuss the case
where only the contrastive loss Lscl is applied. Interest-
ingly, contrastive E3Outlier without Lcls yields sigificantly
worse performance on CIFAR10/CIFAR100 (77.3%/76.6%
AUROC under ρ = 10%), but the performance is better on
SVHN (91.7% AUROC under ρ = 10%). The reason is that
the performance on “0” class of SVHN suffers from a drastic
degradation when classification is performed, as “0” is still
a “0” aften a rotation of 90, 180 or 270 degrees. Thus, the
classification task is completely invalid in this case.

4.3 E3Outlier based Video Abnormal Event Detection
4.3.1 Unsupervised Video Abnormal Event Detection
Inspired by E3Outlier’s success with images, it is natural to
explore E3Outlier for other type of visual data, e.g. videos.

To this end, unsupervised video abnormal event detection
(UVAD) [10] is exactly an application of deep OD to videos.
UVAD is an emerging task that aims to detect those un-
usual events that divert from other frequently-encountered
routine in completely unlabeled video sequences. As it does
not require labeling and enumerating normal video events
to construct a training set, UVAD is more challenging than
semi-supervised VAD that has been thoroughly studied
[86]. Most existing UVAD solutions approach UVAD by
change detection and its variants [10], [87], [88], while the
recent work [89] also proposes a different solution that first
initializes the detection results based on IF and pre-trained
DNNs, and then refines the detection iteratively. However,
existing UVAD solutions typically perform unsatisfactorily.

4.3.2 Design of E3Outlier based UVAD Solution
Before we tailor the E3Outlier for UVAD, we notice two
important differences between UVAD and previous outlier
image removal task: First, despite that discriminative and
contrastive E3Outlier are shown to be highly effective in
detecting outlier images by appearance information (e.g.
structure and texture), normal and abnormal video events
are often conducted by the same type of subjects in UVAD
(For example, humans in Fig. 9). In other words, appearance
differences are less important to UVAD. Second, unlike
static images, videos are described by both appearance and
motion information. As motion is the key to detecting many
abnormal events, optical flow maps of video frames are
often computed to describe the motion in videos. Therefore,
both raw video frames and optical flow maps are supposed
to be exploited for providing self-supervision. Due to those
differences, we naturally turn to generative E3Outlier to con-
nect both appearance and motion view. Based on generative
E3Outlier, the designed UVAD solution is presented below:

First of all, we follow our previous work [90] to extract
and represent video events: Foreground objects in each
video frame are first localized by a series of regions of
interest (RoIs). Then, 5 rectangular patches are extracted
from current and 4 neighboring frames by the location of
each RoI. Afterwards, they are normalized into 32× 32 and
stacked into a 5 × 32 × 32 spatio-temporal cube (STC) x =
[p1; · · · ; p5], where pi is a normalized patch (i = 1, · · · , 5).
Note that a STC x serves as the basic representation of a
video event, because it not only describes the foreground
object but also contains its motion in a time interval. To
apply generative E3Outlier, we then design the operation
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TABLE 4: Performance comparison (in %) of discriminative E3Outlier with single-label (SL) and multi-label (ML) learning.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

E3Out. (SL) 94.1 99.3 67.5 93.3 99.0 75.9 83.5 97.5 43.4 86.0 98.0 36.7 79.2 96.8 33.3
E3Out. (ML) 95.4 99.5 71.1 92.7 98.9 72.9 84.1 97.6 45.1 86.9 98.1 38.5 80.0 97.0 34.9

TABLE 5: Performance comparison (in %) of different DNN models for generative E3Outlier.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

CAE 86.7 96.4 60.3 89.6 98.5 61.6 66.3 93.5 20.0 63.6 93.9 15.0 61.2 92.4 16.7
UNet 82.0 95.0 56.5 86.4 98.0 52.8 72.2 92.0 26.1 68.5 94.7 18.6 65.5 93.5 20.5

(a) A person riding in the crowd. (b) A skater and a riding person. (c) A student throwing his backpack.

Fig. 9: Examples of abnormal events on UCSDped1, UCSDped2 and Avenue datasets (walking pedestrians are normal).

TABLE 6: Performance comparison of state-of-the-art UVAD
methods with our E3Outlier based UVAD solution in terms
of frame-level AUC (“-” indicates that the performance is
not reported).

UCSDPED1 UCSDPED2 AVENUE

SCD [10] 59.6% 63.0% 78.3%
UM [87] 68.4% 82.2% 80.6%
MC2ST [88] 71.8% 87.5% 84.4%
DOR [89] 71.7% 83.2% -
E3OUT. 79.5% 92.6% 89.2%

O(·|y1) and O(·|y2) as follows: Given an input STC, O(·|y1)
is defined by O(x|y1) = [p1; p2; p4; p5], which means delet-
ing the middle patch in the STC x. Meanwhile, we devise
two types of O(·|y2): (1) O(x|y2) = p3, which suggests
fetching the middle patch of x. (2) O(x|y2) = OF (p3),
which means transforming p3 into its corresponding optical
flow map. In this way, we actually define a self-supervised
learning task that aims to infer p3 and its optical flow map
based on x’s remaining patches p1, p2, p4, p5. We simple use
CAE to carry out this generative task. As described in Sec.
3.6.1, we can train the models by the objective in Eq. (14) and
score each STC by Eq. (15). The scores yielded by two types
of O(·|y2) operations are normalized and then summed to
obtain the final score of each STC. The minimum of all STCs’
scores on a frame is viewed as the frame score. More details
are provided in Sec. 5 of supplementary material.

4.3.3 Performance Evaluation and Comparison

To evaluate the performance of our UVAD solution, we
conduct experiments on three most commonly-used VAD
benchmark datasets: UCSDped1 [91], UCSDped2 [91] and

Avenue [92]. Following the standard practice in VAD, we
compute frame-level AUC [91] as the quantitative perfor-
mance measure, and compare our method with latest state-
of-the-art UVAD approaches: Shuffled change detection
(SCD) [10], Unmasking (UM) [87], Multiple Classifier Two
Sample Test (MC2ST) [88], and Deep Ordinal Regression
(DOR) [89]. The results are displayed in Table 6, and we can
discover that the proposed E3Outlier based UVAD solution
outperforms existing UVAD solutions by by a 4% to 10%
frame-level AUROC, which justifies E3Outlier as a flexible
and effective solution to different OD applications. Besides,
unlike SCD, UM and MC2ST that require feature extraction
based on hand-crafted descriptors, the proposed E3Outlier
based solution achieves end-to-end UVAD, while it also
leads the other deep UVAD solution DOR by a huge margin.

5 CONCLUSION

In this paper, we propose a self-supervised deep OD frame-
work named E3Outlier. E3Outlier for the first time leverages
discriminative self-supervised learning for deep OD, which
facilitates more effective representation learning from raw
images. Then we demonstrate inlier priority, a property that
lays the foundation for end-to-end OD, by both theory and
empirical validations. Afterwards, we illustrate how the net-
work uncertainty of discriminative DNNs can be utilized as
a new outlierness measure, and present three specific outlier
scores that can outperform the baseline. Then, the joint score
refinement that fuses two types of strategies can be used
to further boost OD performance. Finally, we demonstrate
the applicability of E3Outlier to different learning paradigms
and other deep OD applications.
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[84] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked
convolutional auto-encoders for hierarchical feature extraction,”
in International Conference on Artificial Neural Networks. Springer,
2011, pp. 52–59.

[85] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
4700–4708.

[86] B. Ramachandra, M. Jones, and R. R. Vatsavai, “A survey of single-
scene video anomaly detection,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2020.

[87] R. Tudor Ionescu, S. Smeureanu, B. Alexe, and M. Popescu, “Un-
masking the abnormal events in video,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2895–2903.

[88] Y. Liu, C.-L. Li, and B. Póczos, “Classifier two sample test for video
anomaly detections.” in BMVC, 2018, p. 71.

[89] G. Pang, C. Yan, C. Shen, A. V. D. Hengel, and X. Bai, “Self-trained
deep ordinal regression for end-to-end video anomaly detection,”
2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 12 170–12 179, 2020.

[90] G. Yu, S. Wang, Z. Cai, E. Zhu, C. Xu, J. Yin, and M. Kloft, “Cloze
test helps: Effective video anomaly detection via learning to com-
plete video events,” in Proceedings of the 28th ACM International
Conference on Multimedia, 2020, pp. 583–591.

[91] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos, “Anomaly
detection in crowded scenes,” in 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. IEEE, 2010, pp.
1975–1981.

Page 47 of 71 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



SUBMITTED TO IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JUNE, YEAR 2020 18

[92] C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 fps
in matlab,” in Proceedings of the IEEE international conference on
computer vision, 2013, pp. 2720–2727.

Siqi Wang received the Ph.D. degree in com-
puter science and technology from the Na-
tional University of Defense Technology (NUDT),
China. He is currently an assistant research
professor in College of Computer, NUDT. His
main research include outlier/anomaly detec-
tion and unsupervised learning. His works have
been published on leading conferences and jour-
nals, such as NeurIPS, AAAI, IJCAI, ACM MM,
TPAMI, TIP, PR, TCYB and Neurocomputing. He
serves as a PC member and reviewer for top-tier

conference like NeurIPS and AAAI and several prestigious journals.

Yijie Zeng received the B.Sc. in computational
mathematics from University of Science and
Technology of China in 2015, and the Ph.D. de-
gree in the School of Electrical and Electronic
Engineering from Nanyang Technological Uni-
versity, Singapore in 2020. His research inter-
ests include machine learning, computer vision,
and pattern recognition.

Guang Yu received the bachelor’s degree in
computer science and technology from Sichuan
University, Chengdu, China, in 2018. He is cur-
rently working toward the Ph.D. degree at the
College of Computer, National University of De-
fense Technology, Changsha, China. His main
research interests include anomaly/outlier de-
tection and self-supervised/unsupervised learn-
ing.

Zhen Cheng is currently pursuing the Ph.D.
degree with the National University of Defense
Technology (NUDT), China. His current research
interests include transfer learning, outlier detec-
tion, and deep neural networks.

Xinwang Liu received his PhD degree from Na-
tional University of Defense Technology (NUDT),
China. He is now Professor of School of
Computer, NUDT. His current research in-
terests include kernel learning and unsuper-
vised feature learning. Dr. Liu has published
60+ peer-reviewed papers, including those in
highly regarded journals and conferences such
as TPAMI, TKDE, TIP, TNNLS, TMM, TIFS,
NeurIPS, ICCV, CVPR, AAAI, IJCAI, etc.

Sihang Zhou received his PhD degree from Na-
tional University of Defense Technology (NUDT),
China. He is now lecturer at College of Intelli-
gence Science and Technology, NUDT. His cur-
rent research interests include machine learn-
ing and medical image analysis. Dr. Zhou has
published 20+ peer-reviewed papers, including
IEEE T-IP, IEEE T-NNLS, IEEE T-MI, Information
Fusion, Medical Image Analysis, AAAI, MICCAI.

En Zhu received his PhD degree from Na-
tional University of Defense Technology (NUDT),
China. He is now Professor at School of Com-
puter Science, NUDT, China. His main research
interests are pattern recognition, image pro-
cessing, machine vision and machine learning.
Dr. Zhu has published 60+ peer-reviewed pa-
pers, including IEEE T-CSVT, IEEE T-NNLS, PR,
AAAI, IJCAI, etc. He was awarded China Na-
tional Excellence Doctoral Dissertation.

Marius Kloft is a professor of computer sci-
ence at TU Kaiserslautern and an adjunct faculty
member of the University of Southern California.
Previously he was a junior professor at HU Berlin
and a joint postdoctoral fellow at the Courant
Institute of Mathematical Sciences and Memorial
Sloan-Kettering Cancer Center, New York. He
earned his PhD at TU Berlin and UC Berkeley.

Jianping Yin received his PhD degree from Na-
tional University of Defense Technology (NUDT),
China. He is now the distinguished Profes-
sor at Dongguan University of Technology. His
research interests include pattern recognition
and machine learning. Dr. Yin has published
150+ peer-reviewed papers, including IEEE T-
CSVT, IEEE T-NNLS, PR, AAAI, IJCAI, etc. He
was awarded China National Excellence Doc-
toral Dissertation’ Supervisor and National Ex-
cellence Teacher. He served on the Technical

Program Committees of 30+ international conferences and workshops.

Qing Liao received her Ph.D. degree in com-
puter science and engineering in 2016 super-
vised by Prof. Qian Zhang from the Depart-
ment of Computer Science and Engineering of
the Hong Kong University of Science and Tech-
nology. She is currently an assistant professor
with School of Computer Science and Technol-
ogy, Harbin Institute of Technology (Shenzhen),
China. Her research interests include artificial
intelligence and bioinformatics.

Page 48 of 71*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



SUBMITTED TO IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, MONTH JUNE, YEAR 2020 1

E3Outlier : A Self-supervised Framework for
Unsupervised Deep Outlier Detection

–Supplementary Material–
Siqi Wang, Yijie Zeng, Guang Yu, Zhen Cheng, Xinwang Liu, Sihang Zhou, En Zhu, Marius Kloft,

Jianping Yin, Qing Liao

F

1 DATA OPERATION DESIGN

To obtain sufficient data operations for creating abundant
pseudo classes, we design each data operation O(·|y) by
combining one or more basic transformations drawn from
several transformation categories below: (1) Rotation, which
includes simple rotation transformations that clock-wisely
rotate images by integer times of 90◦: TSR = {Rot(·, (y −
1) · 90◦)}4y=1, and irregular rotation transformations by
integer times of 30◦ (transformations already in TSR are
excluded): TIR = {Rot(·, (y − 1) · 30◦)}12y=1 − TSR. (2)
Flip: TF = {Flip(·, y)}1y=0, where y = 1/0 refers to
flipping the image or not. (3) Shifting, which includes x-
axis shifting: TSx = {Sx(·, (y − 2) · D)}3y=1 and y-axis
shifting: TSy = {Sy(·, (y − 2) · D)}3y=1 (D is the step of
shifting). (4) Patch re-arranging, which partitions the image
into M equally-sized patches and re-organizes them into
a new image by a permutation selected from M ! possible
permutations: TPR = {PR(·, permy)}M !

y=1. Next, we design
three operation subsets (regular affine operation set ORA,
irregular affine operation set OIA and patch re-arranging
operation set OPR) by joining transformations from above
categories (“×” refers to Cartesian product):

ORA = TSR × TF × TSx × TSy,

OIA = TIR × TF , OPR = TPR
(1)

In our experiments, we choose D = 8 pixels and M = 4.
In this way, we construct 72, 16 and 24 operations for ORA,
OIA andOPR respectively. The final operation set is yielded
by O = ORA ∪ OIA ∪ OPR. The reason why we construct
operation sets as (1) is to avoid joining two transforma-
tion types that both produce obvious image artifact (e.g.
shifting and irregular rotation), which tends to degrade OD
performance. It should be noted that other ways to design
data operations are also possible. O can be extended by
adding new data operations, and SSD can adapt by simply
modifying the number of nodes in its Softmax layer. To just
the necessity of such an operation design, we evaluate the
performance of E3Outlier without score refinement when
different combinations of operation sets are used to provide
self-supervision: As suggested by results in Table 1, using

Manuscript received June 30, 2020.

TABLE 1: Comparison of different operation set designs.

MST FMST C10 SH C100
ORA 92.6 92.3 80.7 81.9 73.0
ORA ∪ OIA 92.9 93.0 82.7 83.6 77.3
ORA ∪ OIA ∪ OPR 94.1 93.3 83.5 86.0 79.2

ORA alone has already been able to achieve superior per-
formance to previous DNN based OD methods, but adding
more types of operations sets constantly brings about per-
formance gain. When using ORA ∪ OIA ∪ OPR, we even
obtain up to 6.2% AUROC improvement when compared
with using ORA alone on CIFAR100. Such results verify the
necessity to combine different types of operation sets for
self-supervision, and they also reveal the potential to de-
velop more types of operation sets for further performance
improvement.

2 THEORETICAL DEVIRATION ON INLIER PRIORITY

We consider an SSD with its network weights randomly
initialized by i.i.d. uniform distribution on [−1, 1]. Sup-
pose that the network of SSD has an (L + 1)-node penul-
timate layer and a final K-node softmax layer. We dis-
cuss the case of inliers Xin first: For cross-entropy loss
L, only transformed inliers generated by the c-th op-
eration X

(c)
in = {x(c)|x ∈ Xin} are used to update wc.

The gradient vector incurred by X
(c)
in is denoted by

∇(in)
wc L = [∇ws,c

L]
(L+1)
s=1 with its element ∇ws,c

L given by:

∇ws,cL =

Nin∑
i=1

∇ws,cL(xi) =

Nin∑
i=1

(P (c)(xi)− 1)h(s)(xi) (2)

where Nin is the inlier number (Nout is the outlier number),
P (c)(xi) is the c-th node’s output of the Softmax layer and
h(s)(xi) is the s-th node’s output of the penultimate layer for
xi ∈ X

(c)
in . Since SSD is randomly initialized, we compute

the expectation of inliers’ gradient magnitude to update
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wc, i.e. E(||∇(in)
wc L||22). As ||∇(in)

wc L||22 =
∑L+1
s=1 (∇ws,c

L)2,
it needs to compute the term below:

E((∇ws,cL)
2) = E((

Nin∑
i=1

∇ws,cL(xi))
2)

=

Nin∑
i=1

Nin∑
j=1

E(∇ws,cL(xi)∇ws,cL(xj)).

(3)

To compute (3), we first define a function g(s,c)ij as follows:

g
(s,c)
ij = ∇ws,c

L(xi)∇ws,c
L(xj)

= (P (c)(xi)− 1)(P (c)(xj)− 1)h(s)(xi)h
(s)(xj)

(4)

where h(s)(xi) is the penultimate layer’s s-th node’s output
and P (c)(xi) denotes the softmax layer’s c-th node’s output
for xi. Our goal is to compute E(g

(s,c)
ij ) w.r.t the weights

between the penultimate layer and the final softmax layer,
which is a (L+1)×K vector w = [wc]

K
c=1, with the weights

associated with the c-th class (1 ≤ c ≤ K) to be a (L + 1)
column vector wc = [ws,c]

L+1
s=1 . To simplify computation, we

use the second-order Taylor series expansion of g(s,c)ij :

g
(s,c)
ij (w) ≈g(s,c)ij (µ) +∇wg

(s,c)
ij (µ) · (w − µ)

+
1

2
(w − µ)T · ∇2

wg
(s,c)
ij (µ) · (w − µ)

(5)

where µ is the expectation of w. Since each weight in w is
drawn from i.i.d uniform distribution on [−1, 1], we have
µs,c = E(ws,c) = 0, E(w2

s,c) = 1
3 and E(ws,cwt,c) = 0

(s 6= t). Therefore, the expectation of g(s,c)ij w.r.t. w is
approximated as

E(g
(s,c)
ij (w)) ≈g(s,c)ij (0) +

1

2

L+1∑
t=1

K∑
l=1

∇2
wt,l

g
(s,c)
ij (0)E(w2

s,c)

= g
(s,c)
ij (0) +

1

6

L+1∑
t=1

K∑
l=1

∇2
wt,l

g
(s,c)
ij (0)

(6)

Thus, computing E(g
(s,c)
ij (w)) requires the computation of

∇2
wt,l

g
(s,c)
ij (0). Recall the softmax probability is computed

by:

P (c)(xi) =
eh

>(xi)·wc∑K
l=1 e

h>(xi)·wl

(7)

where h(xi) = [h(s)(xi)]
L+1
s=1 is penultimate layer’s output

for xi. Since h(xi) is independent of w, we have:

∇wt,l
P (c)(xi) = −P (c)(xi)(δc,l − P (l)(xi)) · h(t)(xi) (8)

where δc,l = 1 if c = l and δc,l = 0 otherwise. Using (4), (7)
and (8), we can calculate ∇2

wt,l
g
(s,c)
ij by:

∇2
wt,l

g
(s,c)
ij = h(s)(xi)h

(s)(xj)×[
− (h(t)(xi))

2P (c)(xi)(δc,l − P (l)(xi))
2(1− P (c)(xj))+

(h(t)(xi))
2P (c)(xi)P

(l)(xi)(1− P (l)(xi))(1− P (c)(xj))+

2h(t)(xi)h
(t)(xj)P

(c)(xi)P
(c)(xj)(δc,l − P (l)(xi))(δc,l − P (l)(xj))

− (h(t)(xj))
2P (c)(xj)(δc,l − P (l)(xj))

2(1− P (c)(xi))+

(h(t)(xj))
2P (c)(xj)P

(l)(xj)(1− P (l)(xj))(1− P (c)(xi))
]
times

(9)
Therefore, in the summation term of (6), we have (L + 1)

terms that satisfy c = l, and in this case ∇2
wt,l

g
(s,c)
ij |w=0 is:

h(s)(xi)h
(s)(xj)×[

(h(t)(xi))
2 (K − 1)2(2−K)

K4
+

(h(t)(xj))
2 (K − 1)2(2−K)

K4
+ 2h(t)(xi)h

(t)(xj)
(K − 1)2

K4

]
(10)

For the rest (L + 1)(K − 1) terms in the summation term
that satisfy c 6= l, ∇2

wt,l
g
(s,c)
ij |w=0 is:

h(s)(xi)h
(s)(xj)×[

(h(t)(xi))
2 (K − 1)(K − 2)

K4
+

(h(t)(xj))
2 (K − 1)(K − 2)

K4
+ 2h(t)(xi)h

(t)(xj)
1

K4

] (11)

By substituting (10) and (11) into (6), we can obtain the result
of (5) in the original manuscript:

E(∇ws,cL(xi)∇ws,cL(xj))

= E(g
(s,c)
ij (w))

≈ h(s)(xi)h
(s)(xj)

[ (K − 1)2

K2
+

(K − 1)

3K3

L+1∑
t=1

h(t)(xi)h
(t)(xj)

]
(12)

It remains to calculate the expectation of h(t)(xi)h(t)(xj)
in (12). To make its calculation tractable, we consider a
simplified case of a network with a single hidden-layer
and sigmoid activation. In this case, by [1, Lemma 3.b], the
expectation of h(s)(xi)h(s)(xj) w.r.t. the randomly initial-
ized weights between the input and hidden layer satisfies
E(h(s)(xi)h

(s)(xj)) ≈ 1
4 and E(h(s)(xi)

2h(s)(xj)
2) ≈ 1

16 .
Thus, by definition of ||∇(in)

wc L||22 and (3), we yield:

E(||∇(in)
wc
L||22)

≈ N2
in

[
(L+ 1)(

(K − 1)2

4K2
+

(K − 1)(L+ 1)

48K3
)
]

, N2
in ·Q

(13)

Since L,K,Q are constant, (13) suggests that the magnitude
of inliers’ gradient E(||∇(in)

wc L||22) is proportional to N2
in.

Similarly, outliers’ gradient magnitude E(||∇(out)
wc L||22) ≈

N2
out ·Q.
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TABLE 2: Influence of rebooting times for re-weighting.

# OF REB. MST FMST C10 SH C100
0 94.1 93.3 83.2 85.9 79.2
1 94.7 93.6 84.3 86.6 80.6
2 94.9 93.6 84.0 86.3 80.3
3 95.0 93.6 84.3 86.4 80.3
4 95.1 93.6 84.2 86.7 80.9
5 95.0 93.6 83.5 86.1 80.5

3 DETAILS OF NETWORK UNCERTAINTY DEMON-
STRATION EXPERIMENT

To serve this purpose, we generate 2D data xi = [xi, yi] by
a Gaussian Process (GP) with Radial Basis Function (RBF)
kernel, and its covariance matrix is computed by Kij =

exp[− (xi−xj)
2

2σ2 ]. Meanwhile, we add a term ε2i to the i-th
diagonal element of covariance matrix, where εi = 0.3x2i .
Abscissa vales of sampled data (xi) are uniformly drawn
from the (−2.25, 2.25) interval, while ordinate values (yi)
are sampled from the GP. The MC-Dropout method is imple-
mented by a public respiratory1. Codes of the demonstration
experiment are also available in our open respiratory2.

4 DETAILS OF SCORE REFINEMENT

TABLE 3: Influence of model number for ensemble.

# OF ENS. MST FMST C10 SH C100
1 94.0 93.1 83.5 85.8 78.8
3 94.3 93.2 83.7 86.4 80.5
5 94.4 93.3 84.0 86.6 80.9
7 94.4 93.3 84.0 86.6 81.1

In this section, we show the full algorithm procedure
of online re-weighting, reboot re-weighting and joint score
refinement in Algorithm 1, 2 and 3 respectively. We also
discuss two key parameters for score refinement: (1) The
times of rebooting for re-weighting strategy. Intuitively, the
rebooting can be performed multiple times, as better outlier
scores will be obtained for SSD’s initialization after each
rebooting. Thus, we evaluate the OD performance when
rebooting is performed by 0 to 5 times. As shown by Table
2, we obtain some interesting observations: Using rebooting
always produces improvement when compared with the
case without rebooting, but rebooting for multiple times
does not necessarily lead to better OD performance than
rebooting once. This also explains why we only perform
rebooting once in the final JSR. (2) The model number for
ensemble. We also explore how model number influences
the ensemble strategy, and we evaluate the performance
when 1 to 7 SSD models are used for ensemble in one
experiment. As can be seen from Table 3, it is observed on all
benchmarks that adding more models can steadily improve
performance, but the performance tends to level off as the
number of models reach a certain point.

1. https://github.com/JavierAntoran/Bayesian-Neural-Networks
2. https://github.com/demonzyj56/E3Outlier

Algorithm 1 Online Re-weighting

1: Input: X ′, Y , total training epochs T .
2: Output: SSD model M .
3: Randomly initialize SSD M , set weight wi = 1

N , i =
1, · · · , N .

4: for t = 1, · · ·T do
5: Training M by mini-batch optimization of (12) in the

manuscript with X ′, Y , wi, i = 1, · · · , N .
6: Obtain scores S(x1), · · · , S(xN ) by a forward pass

of X ′ into M and any outlier score.
7: Normalize S(xi) into S̄(xi), i = 1, · · · , N , such that∑N

i=1 S̄(xi) = 1 and S̄(xi) ≥ 0.
8: Update wi = S̄(xi), i = 1, · · · , N .
9: end for

Algorithm 2 Reboot Re-weighting

1: Input: X ′, Y , total training epochs T .
2: Output: SSD model M ′.
3: Randomly initialize SSD M and M ′.
4: for t = 1, · · ·T do
5: Training M by mini-batch optimization of (1) in the

manuscript with X ′, Y .
6: end for
7: Obtain scores S(x1), · · · , S(xN ) by a forward pass ofX ′

into M and any outlier score.
8: Normalize S(xi) into S̄(xi), i = 1, · · · , N , such that∑N

i=1 S̄(xi) = 1 and S̄(xi) ≥ 0.
9: Set weight wi = S̄(xi), i = 1, · · · , N .

10: for t = 1, · · ·T do
11: TrainingM ‘ by mini-batch optimization of (12) in the

manuscript with X ′, Y , wi, i = 1, · · · , N .
12: end for

5 IMPLEMENTATION DETAILS

For discriminative E3Outlier, we use the Wide ResNet
(WRN) with the widen factor k = 4 as the backbone
DNN architecture. As illustrated in Sec. 1, K = 112 op-
erations are used for self-supervised learning. Since the
self-supervised learning paradigm will augment original
data by K times, we train WRN for d 250K e epochs. The
batch size is 128. A learning rate 0.001 and a weight decay
0.0005 are adopted. The SGD optimizer with momentum
0.9 is used for MNIST and Fashion-MNIST, while the Adam
optimizer with β = (0.9, 0.999) is used on CIFAR10, CI-
FAR100 and SVHN for better convergence. For the ensem-
ble strategy, we set e = 5 with different random seeds.
We use NE score Sne by default, as it achieves the best
trade off between performance and computational cost. As
to generative E3Outlier, we choose the O(·|y1) from the
operation set defined below: Given an operation set with
flip T ′F = {Flip(·)}, an operation set with RGB-to-gray
operation TG = Gray(·) and an operation set with simple
rotations TSR = {Rot(·, (y− 1) · 90◦)}4y=1, the operation set
O(·|y1) is chosen from the composited set T ′F × TG × TSR,
which contains 4 operations in total. O(·|y2) is chosen to
be an identity map. CAE and UNet are used to implement
the generative DNN G. The structure of CAE is the same as
other CAE based deep OD methods, while the adopted U-
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Algorithm 3 Joint Score Refinement

1: Input: X ′, Y , total training epochs T .
2: Output: An ensemble of SSD models {M1, · · ·Me}.
3: Randomly initialize SSD M .
4: for t = 1, · · ·T do
5: Training M by mini-batch optimization of (1) in the

manuscript with X ′, Y .
6: end for
7: Obtain scores S(x1), · · · , S(xN ) by a forward pass ofX ′

into M and any outlier score.
8: Normalize S(xi) into S̄(xi), i = 1, · · · , N , such that∑N

i=1 S̄(xi) = 1 and S̄(xi) ≥ 0.
9: Set weight wi = S̄(xi), i = 1, · · · , N .

10: for j = 1, · · · e do
11: Initialize SSD model Mj with random seed sj .
12: for t = 1, · · ·T do
13: Training Mj by mini-batch optimization of (12) in

the manuscript with X ′, Y , wi, i = 1, · · · , N .
14: end for
15: end for

Net has four blocks for the encoder and four blocks for the
decoder. Each block has a max-pooling or an upsampling
operation, following two convolutional layers with kernel
size 3. We use upsampling instead of deconvolution for
efficiency. The ability to recover image details for upsam-
pling is limited, so we add skip-connection operations to
pass input details from top layers to bottom layers. A
SGD optimizer with learning rate 0.1 is used to train the
model of generative E3Outlier. When it comes to contrastive
E3Outlier, we use ResNet18 as the backbone architecture
f(·) as feature extractor, and a three-layer fully-connected
network with 128 hidden nodes and 128 output nodes are
used as the projection head g(·). To perform data augmenta-
tion and construct positive data pair, we exploit a composite
of random color jitting, random image crop and random
RGB-to-gray operation to construct the augmentation set A.
The simple rotation set TSR = {Rot(·, (y − 1) · 90◦)}4y=1

is used as operation set Oc to expand the mini-batch. The
τ of contrastive loss is set to 0.5. The DNN model of
contrastive E3Outlier is trained by 50, 100 and 200 epochs
on SVHN, CIFAR10 and CIFAR100 dataset respectively, by a
SGD optimizer with 10 epoch warm-up and cosine learning
rate scheduler. The learning rate is set to be 0.03 for SVHN
and 0.1 for CIFAR10/CIFAR100. As to the E3Outlier based
UVAD solution, the CAE is trained for 10 epochs with the
default Adam optimizer in PyTorch. As to model architec-
ture, we adopt a basic CAE architecture that consists of an
encoder and a decoder. The encoder consists of three blocks,
and each block contains a convolution layer (with kernel
size 3, stride 2 and padding 1), a batch normalization (BN)
layer and a ReLU activation layer. Similarly, the decoder
consists of three blocks. For the first two blocks, they are
both made up of a deconvolution layer (with kernel size 3,
stride 2, padding 1, output padding 1), a BN layer and a
ReLU layer, while the last block contains a single deconvo-
lution layer. The transformation from patch to optical flow
OF (·) is performed by a pretrained FlowNetv2 model [2].

As to competing methods, we adopt the deep CAE

architecture from [3] with a 4-layer encoder and 4-layer
decoder, which is estimated to have a close depth to the
used WRN: conv(k = 3, s = 2) − bn − Relu − conv(k =
3, s = 2) − bn − relu − conv(k = 3, s = 2) − bn − relu −
reshape−fc(4096, 256)−tanh−fc(256, 4096)−bn−relu−
reshape− deconv(k = 3, s = 2)− bn− relu− deconv(k =
3, s = 2)− bn− relu− deconv(k = 3, s = 2)− tanh, while
k and s refer to kernel size and stride. We do not use a
more complex CAE architecture (e.g. CAE using skip con-
nection [4] or more layers) since they usually lower outliers’
reconstruction error as well and actually do not contribute
to the OD performance. For each individual method, the
parameters are set as follows: (1) CAE [5]. CAE is trained
by Mean Square Error Loss (MSE) and its reconstruction
loss is directly used to perform UOD. The CAE is trained
by default Adam optimizer in PyTorch3 for 250 epochs
with learning rate 0.001 and weight decay 0.0005. The
batch size is 128. (2) CAE-IF. CAE-IF is a decoupled/hybrid
method that feeds the learned representations of CAE into
isolation forest (IF) [6]. The training of CAE is the illustrated
above, and the IF is realized by Scikit-learn framework4.
The contamination parameter of IF is set by p = ρ to yield
better OD performance for comparison with E3Outlier, and
other parameters are set to default values in scikit-learn. (3)
Discriminative reconstruction based autoencoder (DRAE)
[7]. We set DRAE’s encouraging term weight λ = 0.1 as
recommended in [7], while other training setting is the
same as CAE. (4) Deep Structured Energy based Models
(DSEBM). For DSEBM, we use the implementation from
[3], which trains the CAE used in DSEBM by 200 epochs
and use the energy based score to perform OD. (5) Robust
Deep Autoencoder (RDAE) [8]. We set λ = 0.00065 for
RDAE’s regularization, which performs best in the empirical
evaluation of [8]. To yield the best performance, we use 20
outer epochs and 1 inner epochs for the alternating opti-
mization. (6) Deep Autoencoding Gaussian Mixture Model
(DAGMM) [9]. As suggested by [9], we adopt λ1 = 0.1,
λ2 = 0.005 for the energy regularization term and the sin-
gularity penalty term respectively. An Adam optimizer with
the recommended learning rate 0.0001 is used to optimize
the CAE and density estimation network for 200 epochs.
The batch size is 1024 as set in [9]. (7) Multiple-Objective
Generative Adversarial Active Learning (MOGAAL). We
strictly follow the original implementation from [10], with
minor modifications to make MOGAAL applicable to image
data: A deep convolutional GAN (DCGAN) is used to
generate pseudo outliers, and 128-d random vectors and
the batch-size 64 are used for image generation. The pseudo
outlier generator and discriminator are jointly trained for 25
epochs, while the discriminator is then separately trained
for 75 epochs to perform OD. (8) Robust Subspace Recovery
based AE (RSRAE). We follow the parameter setup in [11]:
The latent subspace dimension is set to be d = 10, and an
Adam optimizer with learning rate lr = 0.00025 and weight
decay λ = 0.0005 is used to optimize RSRAE. All threshold
values are set as [11]. (9) For two-stage methods, the outputs
of penultimate layer of pre-trained ResNet50 model are
extracted as features, and they are used to train a LoF or

3. https://pytorch.org/
4. https://scikit-learn.org/
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IF model. The contamination parameter of LoF or IF is set
by p = ρ to yield better OD performance for comparison
with E3Outlier, and other parameters are set to default
values in scikit-learn. In general, the hyperparameters of
the compared methods are set to recommended values (if
provided) or the values that produce the best performance.

All experiments are run on a PC with dual NVIDIA
Titan Xp GPUs, 64 GiB RAM and Intel 7820X CPU, under
a programming environment with Python 3.6, PyTorch 0.4.1
and Keras 2.2.0. All implementation details can be found in
our publicly available codes5.

6 CLARIFICATION OF TERMS

In this section, we differentiate three terms that are often
confused in the literature: Outlier detection (OD), out-of-
distribution detection (OOD), (semi-supervised) anomaly
detection (AD):

• OD is a long-standing problem [12] that handles
completely unlabeled data, and it aims to detect
those minority data that divert significantly from
the majority data using some outlierness measures
(e.g. proximity or density). Meanwhile, OD follows a
transductive learning setup, i.e. OD directly computes
outlier scores of all given unlabeled data, and it
does not require a separated labeled training set to
establish an inductive model. For example, as shown
in Fig. 1a, without any labeled training data, two data
clusters are likely to be viewed as inliers, while the
rest of data that are distributed distantly are viewed
as outliers. Thus, OD is a fully-unsupervised task.

• OOD an is emerging topic [13] that aims to determine
whether an incoming datum is from the same data
distribution of an trained model’s training data set. It
often follows an inductive learning setup, as it usually
involves a labeled binary/multi-class training set to
train an inductive model in a supervised manner. As
the example shows in Fig. 1b, OOD leverages the
labeled two-class data in the circle to train a binary
classifier. It is supposed to classify newly-incoming
data into two classes and exclude out-of-distribution
data outside the training distribution. OOD differs
from OD in two facets: 1) OOD often requires a sepa-
rated labeled training set to know which data should
be viewed as in-distribution data, while OD directly
sorts out outliers from given unlabeled data by some
outlierness measure. 2) The labeled binary/multi-
class training set still provides abundant supervision
information for OOD, and the OOD model (usually
discriminative DNNs) can be easily trained in a
supervised manner. It significantly facilitates OOD to
learn more reasonable representations than deep OD.

• AD, which may also be referred as novelty detection
or one-class classification, is another classic topic that
aims to detect anomalies that are different from the
labeled normal data. In fact, AD (rather than OD)
is a highly similar inductive task to OOD, because
it also requires a labeled training set to build a
normality model, which is then used to discriminate

5. https://github.com/demonzyj56/E3Outlier

anomalies or novelties in inference. However, AD’s
main difference from OOD is that its training data
are usually labeled by one rough label (“normal” or
“observed”). Due to the absence of subclass labels
within training data, AD does not require classifying
subclasses like OOD does during inference, and it is
often viewed as a semi-supervised problem that aims
to establish a valid description of appointed normal
data domain (a.k.a data description [14]). Therefore,
the labeling of normality domain plays an important
role in AD: As shown in Fig. 1c and Fig. 1d, AD
is expected to output completely different anomalies
when the labeling of normality is different. In other
words, the detected anomalies/novelties are often
influenced by the definition of normality rather than
the data distribution itself. This is different from
OD that manifests outliers by some intrinsic data
characteristics within the unlabeled dataset.

7 DETAILS OF OD PERFORMANCE

We present the full results of OD performance comparison
in Table 4-8, under outlier ratio 5%, 10%, 15%, 20% and 25%
respectively. Each table contains Area Under ROC curve
(ROC), PR curve with inliers to be the positive class (PR-I)
and PR curve with outliers to be the positive class (PR-O) as
evaluation metrics. Note that only performance of NE based
outlier score is shown for E3Outlier due to the limit of space.
In each table, the best OD performance on each benchmark
is shown in bold.
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TABLE 4: Performance comparison of E3Outlier with baseline and state-of-the-art DNN based OD methods on benchmarks
in terms of Area Under ROC curve, PR curve with inliers to be the positive class (PR-I) and PR curve with outliers to be
the positive class (PR-O), under outlier ratio ρ = 5%. The best performer is shown in bold font.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 5%

CAE 69.3 96.0 25.0 75.1 97.8 23.9 56.2 95.5 7.6 51.5 95.2 5.3 55.6 95.5 8.2
CAE+IF 87.3 99.1 39.2 84.8 98.8 33.1 54.2 95.0 7.3 55.4 95.8 6.1 54.3 95.3 7.4
DRAE 67.6 96.4 24.4 71.5 97.4 21.9 57.0 95.5 8.1 50.6 95.1 5.2 57.2 95.6 9.0

DSEBM 64.1 96.2 17.4 53.2 94.1 12.5 61.6 96.3 8.1 49.7 95.0 5.0 60.1 96.3 9.3
RDAE 74.0 96.8 29.4 78.9 98.3 26.3 55.9 95.2 7.7 52.2 95.3 5.4 56.1 95.5 8.6

DAGMM 60.7 96.1 18.0 64.1 95.5 25.3 55.1 95.5 8.7 49.7 95.0 15.8 54.4 95.5 8.2
MOGAAL 30.2 89.6 7.0 22.3 80.6 9.6 55.3 95.4 6.9 49.3 94.9 4.9 53.5 95.3 6.7

RSRAE 85.8 98.8 41.2 81.9 98.4 33.1 56.0 95.6 7.2 52.0 95.2 5.5 57.9 95.9 7.7
Res50+LoF 80.2 98.3 26.8 64.7 96.5 13.7 67.0 97.2 11.0 62.5 96.8 7.6 71.8 97.7 15.2
Res50+IF 84.4 98.9 33.6 85.3 98.9 37.6 65.1 97.0 9.6 57.8 96.1 6.6 68.0 97.3 12.1

SSD+IF 95.5 99.7 65.1 92.4 99.4 66.5 66.7 97.1 12.0 76.2 98.2 13.9 57.1 96.0 7.2
E3Out. (G) 88.9 98.5 54.6 90.2 99.3 54.7 67.1 96.8 11.7 64.0 97.0 8.0 61.8 96.3 9.3
E3Out. (D) 95.2 99.7 59.8 94.1 99.6 70.4 85.7 99.0 34.6 88.9 99.3 27.2 80.3 98.5 22.7
E3Out. (C) - - - - - - 91.6 99.5 45.8 93.6 99.6 44.9 84.1 99.0 24.0

TABLE 5: Performance comparison of E3Outlier with baseline and state-of-the-art DNN based OD methods on benchmarks
in terms of Area Under ROC curve, PR curve with inliers to be the positive class (PR-I) and PR curve with outliers to be
the positive class (PR-O), under outlier ratio ρ = 10%. The best performer is shown in bold font.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 10%

CAE 68.0 92.0 32.9 70.3 94.3 29.3 55.8 91.0 14.4 51.2 90.3 10.6 55.2 91.0 14.5
CAE+IF 85.5 97.8 49.0 82.3 97.2 40.3 54.1 90.2 13.7 55.0 91.4 11.9 55.0 90.7 13.8
DRAE 66.9 93.0 30.5 67.1 93.9 25.5 56.0 90.7 14.7 51.0 90.3 10.5 55.6 90.9 15.0

DSEBM 60.5 91.6 23.0 53.2 88.9 19.7 60.2 92.3 14.7 50.0 90.0 10.1 59.2 92.2 16.2
RDAE 71.8 93.1 35.8 75.3 95.8 31.7 55.4 90.7 14.9 52.1 90.6 10.8 55.6 90.9 15.0

DAGMM 64.0 92.9 26.6 64.0 92.7 30.3 56.1 91.3 15.6 50.0 90.0 19.3 54.9 91.1 14.2
MOGAAL 30.9 78.8 15.2 22.8 74.8 14.8 56.2 91.1 13.6 49.0 89.7 9.8 53.2 90.4 12.6

RSRAE 84.8 97.4 45.4 78.3 96.2 37.0 56.6 91.4 14.0 51.5 90.3 10.6 57.1 91.6 14.1
Res50+LoF 71.2 97.5 26.6 57.8 96.2 16.9 59.9 91.4 17.4 61.3 90.3 14.0 69.1 94.6 22.2
Res50+IF 83.4 97.5 43.3 82.7 97.3 43.8 64.8 93.8 17.9 57.4 92.0 12.8 67.5 94.3 21.0

SSD+IF 93.8 99.2 68.7 90.6 98.5 68.6 64.0 93.5 18.3 73.4 95.9 22.0 55.6 91.5 13.0
E3Out. (G) 86.7 96.4 60.3 89.6 98.5 61.6 66.3 93.5 20.0 63.6 93.9 15.0 61.2 92.4 16.7
E3Out. (D) 94.1 99.3 67.5 93.3 99.0 75.9 83.5 97.5 43.4 86.0 98.0 36.7 79.2 96.8 33.3
E3Out. (C) - - - - - - 89.0 98.5 53.2 90.1 98.5 51.3 84.1 97.8 38.0

TABLE 6: Performance comparison of E3Outlier with baseline and state-of-the-art DNN based OD methods on benchmarks
in terms of Area Under ROC curve, PR curve with inliers to be the positive class (PR-I) and PR curve with outliers to be
the positive class (PR-O), under outlier ratio ρ = 15%. The best performer is shown in bold font.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 15%

CAE 63.9 86.7 34.8 68.5 90.7 34.6 56.1 86.7 20.6 51.2 85.4 15.8 54.9 86.4 20.4
CAE+IF 84.5 96.2 54.9 79.9 94.8 45.5 54.0 85.4 19.7 54.3 86.7 17.2 53.7 85.7 19.5
DRAE 66.5 89.5 35.0 68.2 91.1 33.3 56.3 86.4 21.1 51.0 85.5 15.6 56.1 86.5 21.6

DSEBM 63.6 88.5 32.6 55.0 84.9 26.4 60.0 88.4 21.1 50.1 85.0 15.2 58.7 88.0 22.6
RDAE 67.0 88.1 37.2 72.1 92.4 36.6 55.1 86.0 20.1 52.2 85.9 16.1 55.0 86.2 21.0

DAGMM 62.0 88.5 31.5 58.0 83.7 42.8 55.4 86.5 20.5 50.0 84.1 24.2 54.2 86.3 19.7
MOGAAL 35.1 73.2 21.2 29.6 73.4 19.6 54.6 86.2 18.9 49.2 84.6 14.8 53.3 85.7 18.8

RSRAE 80.4 93.9 49.2 78.1 94.1 43.5 55.7 86.5 20.3 51.3 85.4 15.8 56.9 87.3 19.9
Res50+LoF 66.2 90.0 28.4 55.0 85.6 20.7 61.5 89.4 22.9 60.3 89.2 19.8 67.1 91.4 27.8
Res50+IF 82.4 96.0 50.4 82.3 95.7 50.7 63.9 90.3 24.1 57.1 87.7 18.6 65.9 90.8 26.9

SSD+IF 92.1 98.4 70.1 89.3 97.3 70.5 62.6 89.6 24.2 71.2 93.0 28.4 55.5 87.1 18.7
E3Out. (G) 84.5 93.1 66.7 84.6 96.3 62.2 64.7 89.5 26.3 63.4 90.5 21.9 60.3 88.2 23.0
E3Out. (D) 92.9 98.6 70.6 92.3 98.2 78.2 81.3 95.6 48.6 83.3 96.2 42.5 78.1 94.7 40.7
E3Out. (C) - - - - - - 86.4 97.0 57.5 87.3 96.9 55.1 83.7 96.6 46.8
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TABLE 7: Performance comparison of E3Outlier with baseline and state-of-the-art DNN based OD methods on benchmarks
in terms of Area Under ROC curve, PR curve with inliers to be the positive class (PR-I) and PR curve with outliers to be
the positive class (PR-O), under outlier ratio ρ = 20%. The best performer is shown in bold font.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 20%

CAE 64.0 82.7 40.7 64.4 85.3 36.8 54.7 81.6 25.5 50.7 80.2 20.7 54.4 81.7 25.6
CAE+IF 81.5 93.6 57.2 77.8 92.2 49.0 53.8 80.7 25.3 54.0 82.0 22.4 53.5 80.9 25.1
DRAE 67.3 86.6 42.5 65.7 86.9 36.6 55.6 81.7 26.8 50.6 80.4 20.5 55.5 81.8 27.0

DSEBM 56.3 81.2 32.3 53.1 79.6 31.7 61.4 85.2 27.8 50.2 80.3 20.2 57.9 83.7 27.8
RDAE 67.0 89.2 43.2 70.9 89.2 41.4 54.2 81.0 25.7 51.8 80.9 21.1 54.9 81.5 26.5

DAGMM 65.9 86.7 41.3 66.0 86.7 43.5 54.7 81.8 26.3 50.0 79.9 29.6 53.8 81.5 24.7
MOGAAL 37.8 70.6 28.0 34.0 66.6 28.3 55.7 82.0 25.0 49.6 79.8 19.8 53.1 80.9 24.4

RSRAE 78.9 91.3 53.0 74.5 90.4 46.3 55.6 82.1 25.8 51.1 80.3 21.0 56.3 82.7 25.2
Res50+LoF 62.4 84.9 31.0 53.4 80.3 24.9 63.6 84.9 27.9 59.3 85.0 25.2 65.3 87.5 32.6
Res50+IF 79.8 93.6 52.1 80.7 93.5 55.0 63.4 86.6 30.4 56.8 83.3 24.2 64.7 87.1 32.4

SSD+IF 90.5 97.3 71.0 87.6 95.6 71.4 60.2 85.0 28.3 69.2 89.5 33.7 54.3 82.1 23.4
E3Out. (G) 83.2 90.4 67.9 85.3 95.2 66.4 64.5 85.7 33.0 62.8 86.8 27.9 59.6 83.8 28.6
E3Out. (D) 91.3 97.6 72.3 91.2 97.1 78.9 79.3 93.1 52.7 81.0 93.4 47.0 77.0 92.4 46.5
E3Out. (C) - - - - - - 83.6 94.8 59.0 84.8 94.9 57.6 82.9 95.1 53.0

TABLE 8: Performance comparison of E3Outlier with baseline and state-of-the-art DNN based OD methods on benchmarks
in terms of Area Under ROC curve, PR curve with inliers to be the positive class (PR-I) and PR curve with outliers to be
the positive class (PR-O), under outlier ratio ρ = 25%. The best performer is shown in bold font.

Dataset MNIST Fashion-MNIST CIFAR10 SVHN CIFAR100
ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O ROC PR-I PR-O

ρ = 25%

CAE 60.9 77.3 42.7 62.8 80.9 41.2 54.2 76.9 30.5 50.7 75.2 25.7 54.6 77.3 31.1
CAE+IF 79.5 90.6 59.7 76.5 89.2 53.0 53.6 76.0 30.6 53.6 77.1 27.5 53.3 76.1 30.1
DRAE 64.2 81.2 44.9 65.3 83.0 41.4 55.4 77.1 32.0 50.5 75.3 25.5 55.1 77.0 32.0

DSEBM 62.9 80.8 43.3 53.8 75.0 38.0 60.0 80.4 32.8 50.2 75.1 25.3 56.7 78.6 32.6
RDAE 65.4 79.7 47.0 69.6 85.7 45.1 54.0 76.4 31.0 51.6 75.9 26.2 54.5 76.7 31.6

DAGMM 60.5 80.1 40.9 58.3 78.6 43.3 54.1 76.6 31.1 50.2 75.0 36.0 52.8 76.2 29.4
MOGAAL 38.9 65.5 35.7 35.8 62.4 34.2 54.4 76.7 29.5 49.4 74.5 24.7 53.0 76.1 29.6

RSRAE 76.6 87.5 56.4 72.6 86.5 50.8 55.7 77.6 31.6 51.1 75.4 26.0 55.5 77.9 30.3
Res50+LoF 59.8 79.5 34.1 52.5 75.1 29.2 58.6 80.0 32.7 58.4 80.5 30.2 63.8 83.2 37.1
Res50+IF 79.1 91.3 57.3 79.6 91.2 57.5 62.0 82.2 34.6 56.0 78.5 29.3 64.2 83.2 37.8

SSD+IF 88.5 95.6 72.0 85.9 93.5 72.1 59.0 80.2 32.9 67.0 85.3 38.0 53.7 77.2 28.3
E3Out. (G) 80.2 85.8 69.1 79.2 90.5 64.1 63.6 81.4 38.3 62.3 83.0 33.5 59.4 79.6 34.2
E3Out. (D) 89.8 96.2 73.7 89.6 95.6 78.7 77.4 90.0 55.7 78.8 91.0 51.0 76.0 89.7 51.3
E3Out. (C) - - - - - - 80.8 91.5 61.3 80.6 91.5 58.1 82.8 93.6 58.8
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Dear Editors and Reviewers,

This manuscript is a significantly extended version of our conference paper published in Annual Conference
on Neural Information Processing Systems (NeurIPS), 2019. The detailed information of the conference paper is
shown in [1], and its published version is submitted with this manuscript as a supplementary material. The main
improvements of the manuscript are summarized as follows:

1) Compared with the conference version that only explores the discriminative learning paradigm for deep outlier
detection (OD), we further design two deep OD solutions that leverage generative learning paradigm (see
generative E3Outlier in Sec. 3.6.1) and contrastive learning paradigm (see contrastive E3Outlier in Sec. 3.6.2)
to provide self-supervision. Generative E3Outlier can not only can not only use the same CAE architecture
to achieve evidently superior OD performance to existing CAE based deep OD solutions, but also enables
more flexible application of E3Outlier to other scenarios like data with multiple modalities/views. Contrastive
E3Outlier is able to produce evident performance gain (up to 4% to 6% AUROC) on relatively difficult
benchmark datasets, i.e. CIFAR10/SVHN/CIFAR100. In this way, we extend the proposed E3Outlier from a
specific single deep OD solution to a stronger and more general self-supervised deep OD framework.

2) In addition to the outlier image removal task in conference verision, we design a new E3Outlier based
solution to the unsupervised video abnormal event detection (UVAD) task (see the new Sec. 4.3), which is
another important application of deep OD. We conduct experiments on three commonly-used video benchmark
datasets, and our solution significantly outperforms state-of-the-art UVAD solutions by about 4% to 10%
AUROC, which demonstrates the flexibility and effectiveness of the proposed E3Outlier.

3) A separated new section (Sec. 3.4) is added to discuss the usage of network uncertainty as a new outlierness
measure for outlier detection. This section first analyzes the drawbacks of the baseline outlier score and the
motivation for improvement (Sec. 3.4.1), then it illustrates the underlying connections among outlier detection,
self-supervised learning and network uncertainty (Sec. 3.4.2), and devises several network uncertainty based
outlier scores (Sec. 3.4.3). Compared with the conference version, this manuscript not only elucidates the
insights why network uncertainty based outlier scores are better than baseline outlier score, but also points
out the direction to design the new outlier score like MC-Dropout (MCD) score.

4) We propose joint score refinement (Sec. 3.5) based on the new re-weighting and ensemble strategy, which
can produce consistent performance improvement for discriminative E3Outlier. The new re-weighting strategy
(Sec. 3.5.2) can further magnify the inlier priority during the self-supervised learning. The ensemble strategy
(Sec. 3.5.3) is expected to enhance the OD performance by improving the network uncertainty estimation.
The way to combine the re-weighting and ensemble for joint score refinement is presented in Sec. 3.5.4.

5) Recent deep outlier detection methods (MOGAAL and RSRAE) are included for comparison with the proposed
method. They are published after the submission of NeurIPS paper, so they are absent in the conference
version. Besides, two-stage baseline solutions that combines pretrained DNN feature extractor and classic
OD models (ResNet50+LoF and ResNet50+IF) are also included for a more comprehensive comparison.

6) The detailed theoretical analysis is provided in Sec. 3.3.2 of the manuscript to demonstrate the effects of
inlier priority during the self-supervised learning, which is absent in the conference version.

7) More comprehensive introduction and literature review are provided in Sec. 1 and Sec. 2.
8) More experiments and discussion are conducted and presented in Sec. 4.
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Abstract

Despite the wide success of deep neural networks (DNN), little progress has been
made on end-to-end unsupervised outlier detection (UOD) from high dimensional
data like raw images. In this paper, we propose a framework named E3Outlier,
which can perform UOD in a both effective and end-to-end manner: First, instead of
the commonly-used autoencoders in previous end-to-end UOD methods, E3Outlier
for the first time leverages a discriminative DNN for better representation learning,
by using surrogate supervision to create multiple pseudo classes from original unla-
belled data. Next, unlike classic UOD that utilizes data characteristics like density
or proximity, we exploit a novel property named inlier priority to enable end-to-end
UOD by discriminative DNN. We demonstrate theoretically and empirically that
the intrinsic class imbalance of inliers/outliers will make the network prioritize
minimizing inliers’ loss when inliers/outliers are indiscriminately fed into the net-
work for training, which enables us to differentiate outliers directly from DNN’s
outputs. Finally, based on inlier priority, we propose the negative entropy based
score as a simple and effective outlierness measure. Extensive evaluations show
that E3Outlier significantly advances UOD performance by up to 30% AUROC
against state-of-the-art counterparts, especially on relatively difficult benchmarks.

1 Introduction

An outlier is defined as “an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism” [1]. In some context of the literature,
outliers are also referred as anomalies, deviants, novelties or exceptions [2]. Outlier detection (OD)
has broad applications such as financial fraud detection [3], intrusion detection [4], fault detection [5],
etc. Various solutions have been proposed to tackle OD (see [6] for a comprehensive review). Based
on the availability of labels, those solutions can be accordingly divided into three categories below
[7]: 1) Supervised OD (SOD) deals with the case where a training set is provided with both labelled
inliers/outliers, but it suffers from expensive data labelling and the rarity of outliers in practice [6].
2) Semi-supervised OD (SSOD) only requires pure single-class training data that are labelled as
“inlier” or “normal”, and no outlier is involved during training. 3) Unsupervised OD (UOD) handles
completely unlabelled data mixed with outliers, and no data label is provided for training at all.

In this paper we will limit our discussion to UOD, as most data are unlabelled in practice and UOD is
the most widely applicable [7]. In particular, two clarifications of concepts must be made: First, in
some literature like [8, 9], “unsupervised outlier/anomaly detection” actually refers to SSOD rather
than UOD by our definition. Second, a recent topic is out-of-distribution sample detection, which

∗Authors contribute equally.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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detects samples that are not from the distribution of training samples [10, 11, 12]. It is similar to
SSOD, but it requires well-labelled multi-class data for training rather than single-class data in SSOD.
Both cases above are different from UOD that does not use any label information in this paper.

Recently, surging image/video data have inspired important UOD applications in computer vision,
e.g. refining web image query results [13] and video abnormal event detection [14]. Unfortunately,
despite the remarkable success of end-to-end deep neural networks (DNN) in computer vision [15], an
effective and end-to-end UOD strategy is still under exploration: State-of-the-art methods [16, 17, 18]
unexceptionally rely on deep autoencoders (AE) or convolutional autoencoders (CAE) to realize
easily achievable DNN based UOD, but they all suffer from AE/CAE’s ineffective representation
learning (detailed in Sec. 3.1). Motivated by this gap, we aim to address UOD in a both effective and
end-to-end fashion, with the application to detect outlier images from contaminated datasets.

Contributions. This paper proposes an effective and end-to-end UOD framework named E3Outlier.
Specifically, our contributions can be summarized below: 1) To liberate DNN based UOD from
AE/CAE’s ineffective representation learning, E3Outlier for the first time enables us to adopt powerful
discriminative DNN architectures like ResNet [19] for representation learning in UOD. This is
realized by surrogate supervision, which creates multiple pseudo classes by imposing various simple
operations on original unlabelled data. 2) E3Outlier discovers outliers based on a novel property of
discriminative network named inlier priority, which evidently differs from previous methods that
utilize certain data characteristics (e.g. density, proximity, distance) to perform UOD. Through both
theory and experiments, we demonstrate that inlier priority will encourage the network to prioritize
the reduction of inliers’ loss during network training. On the foundation of inlier priority, E3Outlier
is able to achieve end-to-end UOD by directly inspecting the DNN’s outputs, which reflect each
datum’s priority level. In this way, it avoids the possible suboptimal performance yielded by feeding
the DNN’s learned representations into a decoupled UOD method [20]. 3) Based on inlier priority,
we explore several strategies and propose a simple and effective negative entropy based score to
measure outlierness. Extensive experiments report a remarkable improvement by E3Outlier against
state-of-the-art methods, particularly on relatively difficult benchmarks for unsupervised tasks.

2 Related Work

Classic Outlier Detection. For classic SOD, labelled data are utilized to build discriminative
models by well-studied supervised binary/multi-class classification techniques, such as support vector
machine (SVM) [21], random forest [22] and recent XGBoost [23]. In contrast, SSOD that requires
only labelled inliers is much more prevalent, and it is also called one-class classification [24] or
novelty detection [25]. Classic SSOD usually involves training a model on pure inliers and detecting
those data that evidently deviate from this model as outliers, and representative SSOD methods
include SVM based methods [26, 27], replicator network/autoencoders [28, 29], principle component
analysis (PCA)/kernel based PCA [30, 31]. Compared with SOD and SSOD, UOD handles the most
challenging case where no labelled data is available. Classic UOD methods discover outliers by
examining the basic characteristics of data, such as statistical properties [32], cluster membership
[33, 34], density [35, 36, 37], proximity [38, 39], etc. Besides, ensemble methods like isolation forest
[40] and its variants [41, 42] are popular in UOD. However, most state-of-the-art UOD methods like
[40, 37, 13] still require manual feature extraction from high dimensional data like raw images.

DNN based Outlier Detection. DNN’s recent success naturally inspires DNN based OD [20]. For
SOD, discriminative DNN can be directly applied, while the main issue is the class imbalance of
inliers/outliers [20], which is explored by [43, 44, 45, 46]. For SSOD, the case is more difficult as
only labelled inliers are provided. DNN solutions for SSOD fall into three types: Mainstream DNN
based SSOD methods handle high dimensional data by label-free generative models, i.e. AE/CAE
[47, 48, 49, 50] and generative adversarial network (GAN) [51, 52, 53]. The second type extends
classic SSOD methods into their deep counterparts, such as deep support vector data description [54]
and deep one-class SVM [55]. The last type turns SSOD into SOD by certain means like introducing
reference datasets [56], intra-class splitting [57], geometric transformations [58] or synthetic outlier
generation [59]. As to UOD, the absence of both inlier and outlier label poses great challenges to
combining UOD with DNN, which results in much less progress than SOD and SSOD. In addition to
the naive solution that feeds DNN’s learned representations into a separated UOD method [20], to our
best knowledge only the following works have explored DNN based UOD: Zhou et al. [17] propose
a decoupled solution that combines a deep AE with Robust PCA, which decomposes the inputs into a
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Figure 1: Surrogate supervision workflow (left) and the comparison of learned representations (right).

low-rank part from inliers and a sparse part from outliers; For end-to-end UOD, Xia et al. [16] use
deep AE directly and propose a variant that estimates inliers by seeking a threshold that maximizes
the inter-class variance of AE’s reconstruction loss. A loss function is designed to encourage the
separation of estimated inliers/outliers; Zong et al. [18] jointly optimize a deep AE and an estimation
network to perform simultaneous representation learning and density estimation for end-to-end UOD.

Surrogate Supervision. Recent studies propose surrogate supervision to improve DNN pre-training
for downstream high-level tasks like image classification and object detection. It imposes certain
operations on unlabelled data to create corresponding pseudo classes and provide supervision signal,
such as rotation [60], image patch permutation [61], clustering [62], etc. Surrogate supervision is
also called self-supervision (see [63] for a comprehensive survey), but we use surrogate supervision
to better distinguish it from AE/CAE, which are also viewed as “self-supervised” in some context. To
our best knowledge, our work is the first to connect surrogate supervision with end-to-end UOD.

3 The proposed E3Outlier Framework

Problem Formulation of UOD. Considering a data space X (in this context the space of images),
an unlabelled data collection X ⊆ X consists of an inlier set Xin and an outlier set Xout, which
originate from fundamentally different underlying distributions [1]. Our goal is to obtain an end-to-
end UOD method S(·) that in the ideal case outputs S(x) = 1 for inlier x ∈ Xin and S(x) = 0 for
outlier x ∈ Xout. In practice, a smaller S(x) indicates a higher likelihood of x to be an outlier.

3.1 Surrogate Supervision Based Effective Representation Learning for UOD

Why NOT AE/CAE? We note that existing DNN based UOD methods rely on AE/CAE [16, 17, 18].
However, it is hard for them to handle relatively complex datasets like CIFAR10 and SVHN: As
our UOD experiments2 show in Fig. 1(b), even a sophisticated deep CAE with isolation forest [40]
only performs slightly better than random guessing (50% AUROC). Similar results are reported in
other AE/CAE based unsupervised tasks like deep clustering [64, 65]. This is because AE/CAE
typically adopt mean square error (MSE) as loss function, which forces AE/CAE to focus on reducing
low-level pixel-wise error that is not sensitive to human perception, rather than learning high-level
semantic features [66, 67]. Therefore, AE/CAE based representation learning is often ineffective.

Surrogate Supervision. Discriminative DNNs like ResNet [19] and Wide ResNet (WRN) [68]
have proved to be highly effective in learning high-level semantic features, but they have not
been explored in UOD due to the lack of supervision. To remedy the absence of data labels and
substitute AE/CAE, we propose a surrogate supervision based discriminative network (SSD) for
more effective representation learning in UOD. Specifically, we first define an operation set with
K operations O = {O(·|y)}Ky=1, where y represents the pseudo label associated with the operation
O(·|y). Applying an operation O(·|y) to x can generate a new datum x(y) = O(x|y), and all data
generated by the operationO(·|y) belong to the pseudo class with pseudo label y. Next, given a datum
x(y′), a discriminative DNN with a K-node softmax layer is trained to classify the type of applied

2All UOD experiments in Sec. 3 follow the setup detailed in Sec. 4.1 and the outlier ratio is fixed to 10%.
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Figure 2: Inliers and outliers’ gradient magnitude on example cases of benchmark datasets during
SSD training. The class used as inliers is in brackets.

operation, i.e. the DNN is supposed to classify x(y′) into the y′-th pseudo class. With P (y)(·) and θ
denoting the probability output by the y-th node of softmax layer and DNN’s learnable parameters
respectively, DNN’s output probability vector for K operations is P (x(y′)|θ) = [P (y)(x(y′)|θ)]Ky=1.
To train such a DNN with an unlabelled data collection X = {xi}Ni=1, the objective function is:

min
θ

1

N

N∑
i=1

LSS(xi|θ) (1)

where LSS(xi|θ) is the loss incurred by xi under surrogate supervision. When the commonly-used
cross entropy loss is used to classify pseudo classes of surrogate supervision, it can be written as:

LSS(xi|θ) = −
1

K

K∑
y=1

log(P (y)(x
(y)
i |θ)) = −

1

K

K∑
y=1

log(P (y)(O(xi|y)|θ)). (2)

As to the operation set O, each operation O(·|y) ∈ O is defined as a combination of one or more
basic transformations from the following transformation sets: 1) Rotation: This set’s transformations
clock-wisely rotate images by a certain degree. 2) Flip: This set’s transformations refer to flipping the
image or not. 3) Shifting: This set’s transformations shift the image by some pixels along x-axis or
y-axis. 4) Patch re-arranging: This set’s transformations partition the image into several equally-sized
patches and re-organize them into a new image by a certain permutation. Based on them, we construct
three operation subsets, i.e. regular affine transformation set ORA, irregular affine transformation
set OIA and patch re-arranging set OPR (detailed in Sec.1 in supplementary material). The final
operation set is O = ORA ∪ OIA ∪ OPR, and Fig. 1(a) shows SSD’s entire workflow. To verify
SSD’s effectiveness, we extract the outputs of its penultimate layer as the learned representations,
while the outputs of deep CAE’s intermediate hidden layer (with the same dimension as SSD) are
used for comparison. We feed them into isolation forest [40], which is generally acknowledged to be
a good UOD method [69], to perform UOD under the same parameterization. As shown in Fig. 1(b),
SSD’s learned representations are able to outperform CAE by a large magrin (8%-10% AUROC).

3.2 Inlier Priority: The Foundation of End-to-end UOD

Motivation. The above simple solution feeds SSD’s learned representations into a decoupled UOD
method, which may yield suboptimal performance because SSD and the UOD method are trained
separately [18, 20]. Our goal is to achieve end-to-end UOD without using a decoupled UOD method.
Recall that outliers are essentially rare patterns in a data collection [7], which implies an intrinsic class
imbalance between inliers/outliers. Class imbalance is unfavorable in machine learning as it leads
to the bias towards majority class during training [70, 71]. However, we argue that class imbalance
can be favorably exploited in UOD as it gives rise to “inlier priority”: Despite that inliers/outliers
are indiscriminately fed into SSD for training, SSD will prioritize the minimization of inliers’ loss.
This intuition naturally inspires an end-to-end UOD solution by measuring how well the SSD’s output
of a datum matches its target pseudo label, which directly indicates its priority level in training and
the likelihood to be an inlier. We demonstrate the inlier priority in terms of two aspects below:

Priority by Gradient Magnitude. Our first point is that inliers will produce gradient with stronger
magnitude to update the SSD network than outliers. To demonstrate this point, we consider an SSD
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Figure 3: An illustration of de facto update and some example cases of the average de facto update
for inliers/outliers during the network training. The class used as inliers is in brackets.

with its network weights randomly initialized by i.i.d. uniform distribution on [−1, 1]. Without loss
of generality, we consider the gradients w.r.t. the weights associated with the c-th class (1 ≤ c ≤ K)
between the penultimate layer and softmax layer, wc = [ws,c]

(L+1)
s=1 (wL+1,c is bias), because these

weights are directly responsible for making predictions. For the commonly-used cross-entropy loss
L, only data transformed by the c-th operation X(c) = {O(x|c)|x ∈ X} are used to update wc. The
gradient vector incurred byL is denoted by∇wcL = [∇ws,cL](L+1)

s=1 , which will be used to update wc

in back-propagation based optimizer like Stochastic Gradient Descent (SGD) [72]. Given unlabelled
data with Nin inliers and Nout outliers, it is easy to know that X(c) also contains Nin transformed
inliers and Nout transformed outliers. Here we are interested in the magnitude of transformed inliers
and outliers’ aggregated gradient to update wc, i.e. ||∇(in)

wc L|| and ||∇(out)
wc L||, which directly reflect

inliers/outliers’ strength to affect the training of SSD. Since SSD is randomly initialized, we need to
compute the expectation of gradient magnitude. As shown in Sec. 2 of supplementary material, for
a simplified SSD network with a single hidden-layer and sigmoid activation, we can quantitatively
derive the following approximation on inliers and outliers’ gradient magnitude:

E(||∇(in)
wc L||2)

E(||∇(out)
wc L||2)

≈ N2
in

N2
out

(3)

where E(·) denotes the probability expectation. As the class imbalance between inliers and outliers
leads to Nin � Nout, we naturally yield E(||∇(in)

wc L||)� E(||∇(out)
wc L||). Therefore, it serves as

a theoretical indication that the gradient magnitude induced by inliers will be significantly larger
than outliers for an untrained SSD network. Since it is particularly difficult to directly analyze more
complex network architectures such as Wide ResNet [68], we empirically examine inliers and outliers’
gradient magnitude during training by experiments (see Fig. 2), and the observations on different
benchmarks are consistent with the above analysis on the simplified case: The magnitude of inliers’
aggregated gradient has constantly been larger than outliers during the process of SSD training.

Priority by Network Updating Direction. Our second point is that the network updating direction
of SSD will bias towards the direction that prioritizes reducing inliers’ loss during the SSD training.
Since training is dynamic and a theoretical analysis is intractable, we demonstrate this point using
an empirical verification by computing inliers/outliers’ average “de facto update”: As illustrated
by Fig. 3(a), consider a datum xi from a batch of data X , and its negative gradient −∇θL(xi)
is the fastest network updating direction to reduce xi’s loss. However, the network weights θ are
actually updated by the negative gradient of the entire batch X , −∇θL(X) = − 1

N

∑
i∇θL(xi). It

is actually different from the best updating direction for each individual datum. Thus, the de facto
update di for xi refers to the actual gradient magnitude that xi obtains along its best direction for
loss reduction from the network update direction −∇θL(X), which can be computed by projecting
−∇θL(X) onto the direction of −∇θL(xi): di = −∇θL(X) · −∇θL(xi)

||−∇θL(xi)|| . In this way, di reflects
how much effort the network will devote to reduce xi’s loss, and it is a direct indicator of data’s
priority during network training. We calculate the average de facto update of inliers/outliers w.r.t the
weights between SSD’s penultimate and softmax layer and visualize some examples in Fig. 3(b)-3(d):
Although the average de facto update of inliers/outliers is very close at the beginning, the average de
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Figure 4: Normalized histograms of inliers/outliers’ Spl(x). The class used as inliers is in brackets.

facto update of inliers becomes evidently higher than outliers as the training continues, which implies
that SSD will devote more efforts to reducing inliers’ loss by its network updating direction.

Remarks on Inlier Priority. 1) Based on the discussion above, inliers will gain priority in terms
of both the gradient magnitude and the updating direction of SSD’s network weights. Such priority
leads to a lower loss for inliers after training, which enables us to discern outliers by SSD’s outputs
and serves as a foundation of end-to-end UOD. 2) Intuitively, inlier priority will also happen when
using AE/CAE based end-to-end UOD methods. However, the effect of inlier priority is severely
diminished in this case for two reasons: First, AE/CAE typically uses the raw image pixels as learning
targets, but the intra-class difference of inlier images can be very large, which means AE/CAE usually
does not have a unified learning target like SSD. Second, AE/CAE is ineffective in learning high-level
representations (as we discussed in Sec. 3.1), which makes it difficult to capture common high-level
semantics of inlier images. Both factors above disable inliers from being a joint force to dominate the
training of AE and produce a strong inlier priority effect like SSD, which is also demonstrated by
AE/CAE’s poor UOD performance in empirical evaluation (see experimental results in Sec. 4.2).

3.3 Scoring Strategies for UOD

Based on inlier priority, we need a strategy S(·) to score a datum x. Given x(y) = O(x|y) and the
probability vector P (x(y)|θ) from SSD’s softmax layer, we explore three strategies below:

Pseudo Label based Score (PL): Inlier priority suggests that SSD will prioritize reducing inliers’
loss during training. For the datum x(y), we note that the calculation of its cross entropy loss only
depends on the probability P (y)(x(y)|θ) that corresponds to its pseudo label y in P (x(y)|θ). Thus,
we propose a direct scoring strategy Spl(x) by averaging P (y)(x(y)|θ) for all K operations:

Spl(x) =
1

K

K∑
y=1

P (y)(x(y)|θ). (4)

Maximum Probability based Score (MP): PL seems to be an ideal score. However, we note that
operations for surrogate supervision do not always create sufficiently separable classes, e.g. image
with a digit “8” is still an “8” when applying a flip operation. Hence, misclassifications will happen
and the probability P (y)(x(y)|θ) that corresponds to pseudo label y may not be the only or the best
indicator to reflect how well the loss of a datum is reduced. Therefore, instead of P (y)(x(y)|θ), we
alternatively adopt the maximum probability of P (x(y)|θ) to calculate the score Smp(x) as follows:

Smp(x) =
1

K

K∑
y=1

max
t

P (t)(x(y)|θ). (5)

Negative Entropy based Score (NE). Both strategies above rely on a single probability retrieved
from P (x(y)|θ), while the information of the rest (K − 1) classes’ probability is ignored. If we
consider the entire probability distribution P (x(y)|θ), the training actually encourages SSD to output
a probability distribution closer to the label’s one-hot distribution. With inlier priority, we can expect
SSD to output a sharper probability distribution P (x(y)|θ) for inliers and a more uniform P (x(y)|θ)
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for outliers. Thus, we propose to use information entropy H(·) [73] as a simple and effective measure
to the sharpness of a distribution, which gives the negative entropy based score Sne(x):

Sne(x) = −
1

K

K∑
y=1

H(P (x(y)|θ)) = 1

K

K∑
y=1

K∑
t=1

P (t)(x(y)|θ) log(P (t)(x(y)|θ)). (6)

A comparison of PL/MP/NE is given in Sec. 4.2. In Fig. 4(a)-4(d), we calculate the most intuitive
Spl(x) of inliers/outliers on benchmarks and visualize the normalized histograms of Spl(x), which
are favorably separable for UOD. Besides, such results also verify the effectiveness of inlier priority.

4 Experiments

4.1 Experiment Setup

UOD Performance Evaluation on Image Benchmarks. We follow the standard procedure from
previous image UOD literature [13, 16, 17] to construct an image set with outliers: Given a standard
image benchmark, all images from a class with one common semantic concept (e.g. “horse”, “bag”)
are retrieved as inliers, while outliers are randomly sampled from the rest of classes by an outlier
ratio ρ. We vary ρ from 5% to 25% by a step of 5%. The assigned inlier/outlier labels are strictly
unknown to UOD methods and only used for evaluation. Each class of a benchmark is used as
inliers in turn and the performance on all classes is averaged as the overall UOD performance. The
experiments are repeated for 5 times to report the average results. Five public benchmarks: MNIST
[74], Fashion-MNIST (F-MNIST) [75], CIFAR10 [76], SVHN [77], CIFAR100 [76] are used for
experiments3. Raw pixels are directly used as inputs with their intensity normalized into [−1, 1]. As
for evaluation, we adopt the commonly-used Area under the Receiver Operating Characteristic curve
(AUROC) and Area under the Precision-Recall curve (AUPR) as threshold-independent metrics [78].

Implementation Details and Compared Methods. For E3Outlier, we use an n = 10 layer wide
ResNet (WRN) with a widen factor k = 4 as the backbone DNN architecture. K = 111 operations
are used for surrogate supervision, and NE is used as the scoring strategy. Since surrogate supervision
augments original data by K times, we train WRN for d 250K e epochs. The batch size is 128. A
learning rate 0.001 and a weight decay 0.0005 are adopted. The SGD optimizer with momentum
0.9 is used for MNIST and F-MNIST, while the Adam optimizer with β = (0.9, 0.999) is used
for CIFAR10, CIFAR100 and SVHN for better convergence. We compare E3Outlier with the
baselines and existing state-of-the-art DNN based UOD methods (reviewed in Sec. 2) below: 1) CAE
[79]. It directly uses CAE’s reconstruction loss to perform UOD. 2) CAE-IF. It feeds CAE’s learned
representations into isolation forest (IF) [40] as explained in Sec. 3.1. 3) Discriminative reconstruction
based autoencoder (DRAE) [16]. 4) Robust deep autoencoder (RDAE) [17]. 5) Deep autoencoding
gaussian mixture model (DAGMM) [18]. 6) SSD-IF. It shares E3Outlier’s SSD part but feeds SSD’s
learned representations into IF to perform UOD. For all AE based UOD methods above, we adopt the
same CAE architecture from [58] with a 4-layer encoder and 4-layer decoder. We do not use more
complex CAE (e.g. CAE using skip connection [80] or more layers) since they usually lower outliers’
reconstruction error as well and do not contribute to CAE’s UOD performance. The hyperparameters
of the compared methods are set to recommended values (if provided) or the values that produce the
best performance. More implementation details are given in Sec. 1 of the supplementary material.
Our codes and results can be verified at https://github.com/demonzyj56/E3Outlier.

4.2 UOD Performance Comparison and Discussion

UOD Performance Comparison. We report the numerical results on each benchmark under
ρ = 10% and 20% in Table 1, and UOD performance by AUROC under ρ from 5% to 25% is
shown in Fig. 5(a)-Fig. 5(e) (full results are given in Sec. 4 of supplementary material). AUPR-
in and AUPR-out in Table 1 denote the AUPR calculated when inliers and outliers are used as
positive class respectively. We draw the following observations from those results: Above all,
E3Outlier overwhelmingly outperforms existing DNN based UOD methods by a large margin. As
Table 1 shows, E3Outlier usually improves AUROC/AUPR by 5% to 30% when compared with
state-of-the-art UOD methods. In particular, E3Outlier produces a significant performance leap

3As all images are viewed as unlabelled in UOD, we do not split train/test set. CIFAR100 uses 20 superclasses.
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Table 1: AUROC/AUPR-in/AUPR-out (%) for UOD methods. The best performance is in bold.

Dataset ρ CAE CAE-IF DRAE RDAE DAGMM SSD-IF E3Outlier

MNIST 10% 68.0/92.0/32.9 85.5/97.8/49.0 66.9/93.0/30.5 71.8/93.1/35.8 64.0/92.9/26.6 93.8/99.2/68.7 94.1/99.3/67.5
20% 64.0/82.7/40.7 81.5/93.6/57.2 67.2/86.6/42.5 67.0/84.2/43.2 65.9/86.4/41.3 90.5/97.3/71.0 91.3/97.6/72.3

F-MNIST 10% 70.3/94.3/29.3 82.3/97.2/40.3 67.1/93.9/25.5 75.3/95.8/31.7 64.0/92.7/30.3 90.6/98.5/68.6 93.3/99.0/75.9
20% 64.4/85.3/36.8 77.8/92.2/49.0 65.7/86.9/36.6 70.9/89.2/41.4 66.0/86.7/43.5 87.6/95.6/71.4 91.2/97.1/78.9

CIFAR10 10% 55.9/91.0/14.4 54.1/90.2/13.7 56.0/90.7/14.7 55.4/90.7/14.0 56.1/91.3/15.6 64.0/93.5/18.3 83.5/97.5/43.4
20% 54.7/81.6/25.5 53.8/80.7/25.3 55.6/81.7/26.8 54.2/81.0/25.7 54.7/81.8/26.3 60.2/85.0/28.3 79.3/93.1/52.7

SVHN 10% 51.2/90.3/10.6 55.0/91.4/11.9 51.0/90.3/10.5 52.1/90.6/10.8 50.0/90.0/19.3 73.4/95.9/22.0 86.0/98.0/36.7
20% 50.7/80.2/20.7 54.0/82.0/22.4 50.6/80.4/20.5 51.8/80.9/21.1 50.0/79.9/29.6 69.2/89.5/33.7 81.0/93.4/47.0

CIFAR100 10% 55.2/91.0/14.5 54.5/90.7/13.8 55.6/90.9/15.0 55.8/90.9/15.0 54.9/91.1/14.2 55.6/91.5/13.0 79.2/96.8/33.3
20% 54.4/81.7/25.6 53.5/80.9/25.1 55.5/81.8/27.0 54.9/81.5/26.5 53.8/81.5/24.7 54.3/82.1/23.4 77.0/92.4/46.5
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Figure 5: UOD performance (AUROC) comparison with varying ρ from 5% to 25%.

(≥ 20% AUROC gain) on CIFAR10, SVHN and CIFAR100, which have constantly been difficult
benchmarks for UOD. Next, end-to-end E3Outlier almost consistently outperforms its decoupled
counterpart SSD-IF. Although SSD-IF performs closely to E3Outlier in simple cases, E3Outlier
evidently prevails over SSD-IF on CIFAR10/SVHN/CIFAR100 by 11% to 24% AUROC gain. By
contrast, the decoupled CAE-IF/RDAE get better UOD performance than their end-to-end coun-
terparts CAE/DRAE/DAGMM on MNIST/F-MNIST, and all of them yield inferior performance
on CIFAR10/SVHN/CIFAR100. Hence, observations above have justified E3Outlier as a highly
effective and end-to-end UOD solution. In addition, we would like to make two remarks: 1) We
must point out that the data augmentation effect (surrogate supervision will augment the training
data by K times) is not the reason why E3Outlier outperforms existing methods by a large mar-
gin. Experiments show that when we train CAE with the same training data with E3Outlier, the
performance typically becomes worse than original CAE (e.g. 55.5%/63.9%/54.2%/50.0%/53.8%
AUROC on MNIST/F-MNIST/CIFAR10/SVHN/CIFAR100 when ρ = 10%). By contrast, E3Outlier
can effectively exploit the high-level discriminative label information from data of pseudo classes,
which is fundamentally different from generative models like AE/CAE. 2) To fairly compare the
quality of learned representation for CAE and SSD, CAE’s hidden layer by default shares SSD’s
penultimate layer dimension, which is fixed to 256 by Wide-ResNet architecture. A different latent
dimension may influence CAE’s performance, but it cannot enable CAE to perform comparably
to E3Outlier, especially on difficult datasets like CIFAR10. We also test other values for CAE’s
latent dimensions, and experimental results show that even for a carefully selected latent dimension
(e.g. 64) that performs best on most benchmarks, it brings minimal gain to CAE’s performance on
difficult datasets CIFAR10/CIFAR100 (e.g. 56.3%/56.1% AUROC when ρ = 10%), and on simpler
datasets (MNIST/F-MNIST/SVHN) CAE’s performance (71.9%/75.6%/53.4%, ρ = 10%) is still far
behind E3Outlier (94.1%/93.3%/86.0%) despite some limited improvement. More importantly, a
prior choice of the optimal latent dimension or CAE architecture for UOD is difficult in itself.

Discussion. We discuss five factors that are related to our E3Outlier framework’s performance by
experiments. Since the trends under different values of ρ are fairly similar, we visualize the results
when using ρ = 10%: 1) Operation set for surrogate supervision (see Fig. 6(a)): We test the UOD
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Figure 6: Different factors’ influence on E3Outlier’s performance under ρ = 10%.

performance with different combinations of operation subsets to be O. The results suggest that ORA

alone already works satisfactorily, but a union ofORA,OIA andOPR produces the best performance,
which reflects the extendibility of operation sets. 2) Network architecture (see Fig. 6(b)): In addition
to WRN, we explore ResNet-20/ResNet-50 [19] and DenseNet-40 [81] for SSD with other settings
fixed. The results show that those architectures basically achieve satisfactory UOD performance with
minor differences, which verifies the applicability of different network architectures. In particular,
we note that a more complex architecture (ResNet-50/DenseNet-40) improves the UOD performance
on relatively complex datasets (CIFAR10, SVHN and CIFAR100), but its performance is inferior
on simple datasets. 3) Scoring strategy (see Fig. 6(c)): Among three scoring strategies (PL/MP/NE)
proposed in Sec. 3.3, NE constantly yields the best performance by up to 2.3% AUC gain compared
with PL/MP, while MP also outperforms the naive PL. Thus, we use the NE by default for E3Outlier.
4) Training epochs (see Fig. 6(d)): We measure the UOD performance when the SSD is trained by 1
to 10 epochs respectively. In general, the UOD performance is improved at the initial stage of training
(less than 3 training epochs) and then stabilizes as the training epochs continue to increase. 5) Outlier
ratio: First, we note that sometimes the ratio of outliers can be very small (e.g. ≤ 1%), so we also test
E3Outlier’s performance in such case. The experiments show that E3Outlier still achieves satisfactory
performance: For example, when ρ = 0.5%, E3Outlier achieves 96.0%/93.6%/87.4%/91.0%/80.7%
AUROC for MNIST/F-MNIST/CIFAR10/SVHN/CIFAR100 respectively, which is even better than
the case with a higher outlier ratio. We also notice that the performance of E3Outlier tends to drop as
the outlier ratio ρ increases. This is reasonable in the setting of UOD because the “outlierness” of
outliers will decrease as their number increases, i.e. they are less likely to be viewed as “outliers”
under the unsupervised setting as they gradually play a more important role in constituting the original
unlabelled data.

5 Conclusion

In this paper, we propose a framework named E3Outlier to achieve effective and end-to-end UOD
from raw image data. E3Outlier exploits surrogate supervision rather than traditional AE/CAE
for representation learning in UOD, while a new property named inlier priority is demonstrated
theoretically and empirically as the foundation of end-to-end UOD. By inlier priority and the negative
entropy based score, E3Outlier achieves significant UOD performance leap when compared with state-
of-the-art DNN based UOD methods. For future research, it is interesting to explore a quantitative
measure of each operation’s effectiveness for surrogate supervision and develop effective late fusion
strategies of different operations for scoring. As an open framework, different network architectures,
surrogate supervision operations and scoring strategies can also be explored for E3Outlier.
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