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Abstract—Multiple kernel clustering (MKC) algorithm aims to group data into different categories by optimally integrating information
from a group of pre-specified kernels. Though demonstrating superiorities in various applications, we observe that existing MKC
algorithms usually do not sufficiently consider the local density around individual data samples and excessively limit the representation
capacity of the learned optimal kernel, leading to unsatisfying performance. In this paper, we propose an algorithm, called optimal
neighborhood MKC with adaptive local kernels (ON-ALK), to address the two issues. In specific, we construct adaptive local kernels to
sufficiently consider the local density around individual data samples, where different numbers of neighbors are discriminatingly
selected on each sample. Further, the proposed ON-ALK algorithm boosts the representation of the learned optimal kernel via relaxing
it into the neighborhood area of weighted combination of the pre-specified kernels. To solve the resultant optimization problem, a
three-step iterative algorithm is designed and theoretically proven to be convergent. After that, we also study the generalization bound
of the proposed algorithm. Extensive experiments have been conducted to evaluate the clustering performance. As indicated, the
algorithm significantly outperforms state-of-the-art methods in recent literatures on six challenging benchmark datasets, verifying its
advantages and effectiveness.

Index Terms—Multiple kernel clustering, Kernel alignment, Kernel k-mean.
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1 INTRODUCTION

K ERNEL clustering has been widely explored in current
machine learning and data mining literatures. It im-

plicitly maps the original non-separable data into a high-
dimensional Hilbert space where corresponding vertices
have a clear decision boundary. Then, various clustering
methods, including k-means [1], [2], fuzzy c-means [3],
spectral clustering [4] and Gaussian Mixture Model (GMM)
[5], are applied to group the unlabeled data into categories.
Although kernel clustering algorithms have achieved great
success in a large volume of applications, they are only able
to handle data with a single kernel. Meanwhile, kernel func-
tions are of different types, such as Polynomial, Gaussian,
Linear, etc., and parameterized manually. How to choose
the right kernel function and pre-define its parameters opti-
mally for a specific clustering task is still an open problem.
Nevertheless, sample features are collected from different
sources in most practical settings. For example, news is
reported by multiple news organizations; a person can be
described from its fingerprint, palm veins, palm print, DNA
, etc. The most common approach is to concatenate all
features into one vector. But it ignores the fact that the
features may not be directly comparable.

Multiple kernel clustering (MKC) algorithms, which uti-
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lize the complementary information from the pre-specified
kernels, are well studied in literatures to address the afore-
mentioned issues and can be roughly grouped into three
categories. Methods in the first category intend to construct
a consensus kernel for clustering by integrating low-rank
optimization [6], [7], [8], [9], [10], [11]. For instance, Zhou
et al. firstly recover a shared low-rank matrix from tran-
sition probability matrices of multiple kernels, and then
use it as input to the standard Markov chain method for
clustering [10]. Techniques in the second category compute
their clustering results with the partition matrices generated
from each individual kernel. Liu et al. firstly perform kernel
k-means on each incomplete view and then explore the
complementary information among all incomplete cluster-
ing results to obtain a final solution [12]. On the contrary,
algorithms of the third category build the consensus ker-
nel along with the clustering process. Most of them take
the basic assumption that the optimal kernel is able to
be represented as a weighted combination of pre-specified
kernels. Huang et al. extend the fuzzy c-means by incor-
porating multiple kernels and automatically adjusting the
kernel weights, which makes the clustering algorithm more
immune to ineffective kernels and irrelevant features [13].
They also show multiple kernel k-means to be a special case
of multiple kernel fuzzy c-means. The weighted combina-
tion assumption is also applied in spectral clustering, such
as [14], [15]. Similarly, Yu et al. optimize the kernel weights
based on the same Rayleigh quotient objective and claim
their algorithm is of lower complexity [16]. Apart from this,
various regularizations are formulated to help constrain the
kernel weights and affinity matrix. For example, Du et al.
use the L2,1-norm in the original feature space to minimize
the reconstruction error [17]. Liu et al. propose Matrix-
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induced regularization to prevent from highly imbalanced
weight assignment so as to reduce the mutual redundancy
among kernels and enhance the diversity of selected ker-
nels [18]. Zhao et al. assume each pre-specified kernel is
constructed by the consensus matrix and a transition proba-
bility matrix [19]. They regularize the two types of matrices
to be low-rank and sparse respectively. Liu et al. deal with
incomplete kernels and propose a mutual kernel completion
term to compute the missing items in kernels and learn the
kernel weights simultaneously [20]. Instead of assuming the
equality of samples in one kernel, some researches perform
clustering with assigning different weights to samples, such
as [21], [22].

Kernel alignment is an effective regularization in multi-
ple kernel k-means algorithms [23], [24], [25]. However, Li
et al. claim kernel alignment forces all sample pairs equally
aligned with the same ideal similarity, conflicting with the
well-established concept that aligning two farther samples
with a low similarity is less reliable in high dimensional
space [26]. Observing the local kernel trick in [27] can better
capture sample-specific characteristics of the data, they use
neighbors of each sample to construct local kernels and max-
imize the sum of their alignments with the ideal similarity
matrix [26]. Additionally, the local kernel is demonstrated
to be capable of helping the clustering algorithm better use
the information provided by closer sample pairs [28].

The aforementioned MKC algorithms suffer from two
facts, not sufficiently considering the local density around indi-
vidual data samples and excessively limiting the representation
capacity of the learned optimal kernel. In specific, the local
kernel in [26] globally sets the number of neighbors for
each sample to a constant, which cannot guarantee all
sample pairs in the local kernel relatively close. It is known
that performing alignment with farther sample pairs is
less reliable. Therefore, this local kernel cannot reduce the
unreliability to a minimum due to overlooking the local
density around individual data samples. At the same time,
most MKC algorithms assume that the optimal kernel is a
weighted combination of pre-specified kernels, but ignore
some more robust kernels in the complement set of ker-
nel combinations. To address the two issues, we propose
a MKC algorithm, called optimal neighborhood multiple
kernel clustering with adaptive local kernels. Specifically,
we design the adaptive local kernel which is constructed by
selecting different number of neighbors whose similarities
between each other are lower bounded by a pre-defined
threshold. The constructed adaptive local kernels are then
applied in MKC model. Meanwhile, the algorithm relaxes
the rigid constraint of learning the optimal kernel from com-
binations of pre-specified kernels into their neighborhood
areas. We also design an iterative algorithm to solve the
resultant optimization problem. Our experiments show a
competitive edge over state-of-the-art clustering algorithms
on various datasets. The main contributions of this paper
are highlighted as follows:

• In order to address the two issues in current MKC
algorithms, not sufficiently considering the local density
around individual data samples and excessively limiting
the representation capacity of the learned optimal kernel,
we design the adaptive local kernel, and locate the

optimal kernel from the neighborhood area of linear
combinations of pre-specified kernels. Then, the both
techniques are utilized into a single multiple kernel
clustering framework.

• We derive an algorithm, named optimal neighbor-
hood multiple kernel clustering with adaptive local
kernels, and study its generalization bound. Never-
theless, a three-step iterative algorithm is designed
to solve the resultant optimization problem and we
prove its convergence.

• Generalization ability of the proposed algorithm is
well studied, and the generalization bound is proven
to be O(

√
1/n).

• Comprehensive experiments on six challenging
benchmark datasets are conducted to validate the
effectiveness of the proposed algorithm. As demon-
strated, the proposed algorithm outperforms state-
of-the-art clustering methods in recent literatures.

The rest of this paper is organized as follows: Section
2 presents a review of related work. Section 3 is devoted
to the proposed ON-ALK algorithm. Section 4 explores its
generation ability. Extensive experiments are conducted in
section 5 to support our claims. We make some discussions
and introduce the potential future work in Section 6, and
finish the paper with conclusion in section 7.

2 RELATED WORK

In this section, we introduce some related work, including
kernel k-means, multiple kernel k-means and regularized
multiple kernel k-means.

2.1 Kernel k-means

Given a feature space X and a collection of n samples
{xi}ni=1, The feature map ϕ(·) : X → H is denoted to
map X into a Reproducing Kernel Hilbert Space (RKHS)
H [29], such that for any x ∈ X we have φ = ϕ(x).
k-means algorithm aims to partition the samples into k
disjoint clusters with each characterized by its centroid cj .
The sample set associated with centroid cj is defined as
Cj = {i | j = argmins=[k] ‖φi − cs‖}, or in other words a
point φi belongs to the j-th cluster if cj is its closest centroid.
The k-means objective is presented as

1

n

n∑
i=1

min
j=1,·,k

‖φi − cj‖2. (1)

With the cluster assignment matrix Z ∈ {0, 1}n×k where
Zij = 1 if i ∈ Cj . The objective can be written as

min
Z

1

n

n,k∑
i=1,j=1

Zij‖φi − cj‖2 (2)

in which
∑k
j=1 Zij = 1 and

∑n
i=1 Zij = |Cj |.

In most cases, φ ∈ RD with D � n or even infinite and
the feature map ϕ(·) is implicit. Therefore, it is difficult to
directly apply k-means on the produced RKHS. By using
the kernel trick where K(x, x′) = φTφ′ in which the kernel
function K(·, ·) can be explicitly given, the kernel matrix K
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is calculated. By expanding the quadratic item in Eq. (2), the
objective is formated as

min
Z

Tr(K)− Tr
(
L

1
2 Z>KZL

1
2

)
(3)

where L = diag(
[
|C1|−1, |C2|−1, · · · , |Ck|−1

]
) and Tr(·) rep-

resents the matrix trace. Observing the discrete Z makes
optimization problem hard to solve, a common approach
is to relax Z to take real values. Specially, by defining
H = ZL

1
2 and letting H take real values, a relaxed version

of the above problem can be obtained as

min
H

Tr
(
K
(
In −HH>

))
s.t. H ∈ Rn×k,H>H = Ik.

(4)

With the obtained H, k-means is applied to compute the
discrete cluster assignments.

2.2 Multiple kernel k-means
In multiple kernel settings, two circumstances in section
1, i.e. multiple kernel fuctions on single view data and
multiple view data, are considered. Given {xi}ni=1 ⊆ X as a
collection of n samples in single view, and {{x(p)i }ni=1}mp=1 ⊆
{X (p)}mp=1 as m views’ data with each consisting of n
samples, φp(·) : x ∈ X 7→ Hp is the p-th feature map that
maps x onto a Reproducing Kernel Hilbert Space (RKHS)
Hp (1 ≤ p ≤ m). Each sample in Hp is represented as
ϕp(xi) or ϕp(x

(p)
i ) which can be writen in an unified form,

i.e. φ(p)i .
Current literatures assign the feature maps with different

weights into φβ,i = [
√
β1φ

(1)
i ,
√
β2φ

(2)
i , · · · ,

√
βmφ

(m)
i ]T ,

where the kernel function can be expressed as

Kβ(xi, xj) = φ>β,iφβ,j =
∑m

p=1
βpKp(x(p)i , x

(p)
j ). (5)

With imputed samples and pre-specified kernel functions,
the weighted combination of kernel matrices is computed
as

Kβ =
m∑
p=1

βpKp. (6)

Applying the hybrid kernel matrix Kβ into Eq. (4), the
objective of multiple kernel k-means is formatted as

min
H,β

Tr(Kβ(In −HH>))

s.t. H ∈ Rn×k, H>H = Ik,

β>1m = 1, βp ≥ 0, ∀p.

(7)

in which Ik is an identity matrix of size k × k.
The optimization problem is able to be solved by alter-

natively updating H and β. Fixing β, H can be obtained by
solving a kernel k-means clustering objective shown in Eq.
(4), while, with given H, β can be optimized via solving

min
β

m∑
p=1

βpTr(Kp(In −HH>))

s.t. H ∈ Rn×k, H>H = Ik,

β>1m = 1, βp ≥ 0, ∀p.

(8)

Nevertheless, some literatures also adopt L2-norm combi-
nation to construct the optimal kernel, rather than the linear
combination of the pre-specified kernels in Eq. (6) [30], [31].

2.3 Regularized multiple kernel k-means

Multiple kernel k-means in Eq. (7) achieves a promising
clustering performance, but it fails to sufficiently consider
the relationships among pre-specified kernels. Several regu-
larizations are proposed to address this issue. Given a set of
kernel matrices {Kp}mp=1, a constant matrix M is defined as
Mpq = Tr(K>p Kq). Ivano et al. notice that a small set of base
kernels may contain a large quantity of helpful clustering
information, and design Spectral Ratio (SR) regularization,
i.e. Eq. (9), to allocate big weights to those kernels but leave
the others close to zeros [32].

max
β

β>Mβ s.t. β>1m = 1, βp ≥ 0, ∀p. (9)

Meanwhile, Liu et al. find similar kernels consist of less com-
plementary clustering information but kernels of large dif-
ferences contain more. Therefore, they propose the Matrix-
induced regularization, as shown in Eq. (10), to reduce the
redundancy of similar kernels by assigning relatively small
weights to them [18].

min
β

β>Mβ s.t. β>1m = 1, βp ≥ 0, ∀p. (10)

The both regularizations have their own application set-
tings, and we regularize kernel relationships via the Matrix-
induced item in this paper. The regularized multiple kernel
k-means model corresponding to Eq. (7) is formulated as

min
H,β

Tr(Kβ(In −HH>)) + λβ>Mβ

s.t. H ∈ Rn×k, H>H = Ik,

β>1m = 1, βp ≥ 0, ∀p.

(11)

3 THE PROPOSED ALGORITHM

In this section, the proposed optimal neighborhood multiple
kernel clustering with adaptive local kernels (ON-ALK)
algorithm is derived. Then, a three-step iterative algorithm
is further designed to solve the resultant optimization prob-
lem. Finally, convergence of the iterative algorithm is proven
and its computation complexity is analyzed.

3.1 The proposed formula

To address the aforementioned issues, i.e. insufficient con-
sideration of sample similarity variances and limited rep-
resentation capacity of the learned optimal kernel, we cor-
respondingly propose the adaptive local kernel and utilized
it with optimal neighborhood kernel [33] into a single MKC
framework.

Current multiple kernel clustering algorithms indiscrim-
inatingly forces all samples aligning with the ideal affinity
matrix, i.e. HH> in Eq. (11), without considering the non-
negligible unreliability from the alignment of farther sam-
ples with low similarities. By observing this drawback, we
construct the adaptive local kernel, which is a sub-matrix
of kernel and reflects the relationships between a sample
and its neighbors. Firstly, a threshold ζ is defined and the
corresponding index set Ω(i) for i-th sample can be written
as

Ω(i) = {j | K(i, j) ≥ ζ}. (12)
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Fig. 1: Local kernel comparison: The darkness of boxes in-
dicates similarity degree between sample pairs. The darker
a box is, the more similar the corresponding sample pair
is. Fig. (a) is the original kernel matrix. Fig. (b.1) and (b.2)
are the local kernel generated in [26] corresponding to 1/3-
th sample. Its size, µ, is fixed to 3; Fig. (c.1) and (c.2) are
the proposed adaptive local kernels corresponding to 1/3-th
sample. The similarities with its neighbors are higher than
ζ .

Then, the corresponding indicator matrix S(i) ∈
{0, 1}n×µ(i)

s.t. µ(i) = length(Ω(i)) is defined

S(i)(i′, j′) =

{
1 s.t. i′ ∈ Ω(i), j′ is the index of i’ in Ω(i)

0 otherwise
(13)

The i-th adaptive local kernel of matrix K can be written as

K(i) = S(i)>KS(i) ∈ Rµ
(i)×µ(i)

. (14)

In other words, Eq. (14) selects µ(i) neighbor samples whose
kernel values corresponding to i-th sample are larger than
ζ and removes the others. Using the constructed local ker-
nels in multiple kernel k-means and setting the trade-off
on Matrix-induced regularization λ to 1, Eq. (11) can be
rewritten as where .

min
H, β

1

n

n∑
i=1

[Tr(K
(i)
β (Iµ(i) −H(i)H(i)>)) + β>M(i)β]

(15)

in which K
(i)
β = S(i)>KβS(i), M

(i)
pq = Tr(K

(i)
p K

(i)
q ), H(i) =

S(i)>H, Iµ(i) is the identity matrix of size µ(i) and µ(i) varies
with the density around samples.

The proposed adaptive local kernel is extended from the
local kernel in [26] which requires the sizes of local kernels
to a constant indiscriminatingly. However, it cannot guar-
antee all sample pairs in one local kernel of high similarity.
On the contrary, we construct the i-th adaptive local kernel
by selecting the samples whose similarities to sample i are
higher than a threshold, ζ . Fig. 1 compares the two types
of local kernel comprehensively. It can be seen that the
local kernels generated in [26] are of the same size, while
the proposed adaptive local kernels are constructed from
similarities of sample pairs. Comparing b.1/2 and c.1/2 in
Fig. 1, we can notice the proposed adaptive local kernel is
usually smaller than the local kernel in [26], guaranteeing
all neighbors of relatively high similarities and reducing the
unreliabilities from aligning farther sample pairs.

Eq. (15) can be regarded as two parts. The first item rep-
resents the loss sum of multiple kernel clustering with local
kernels, while the second item can be seen as a regulariza-
tion to balance the weight assignment, enhancing the diver-
sity of selected kernels. It assumes the linear combination of
pre-specified kernels, i.e. Kβ =

∑m
p=1 βpKp, as the optimal

kernel. However, this excessively limits representativity of
the optimal kernel, preventing from finding a more robust
kernel in the complement set of kernel combinations. There-
fore, we assume that the optimal kernel, termed as J, resides
in the neighborhood of kernel combinations, presented as

N = {J | ‖J−Kβ‖2F ≤ θ, J � 0}. (16)

The assumption is further applied in Eq. (15) , contributing
to

min
H, β, J

1

n

n∑
i=1

[Tr(J(i)(Iµ(i) −H(i)H(i)>)) + β>M(i)β]

s.t. J ∈ N .
(17)

The objective in Eq. (17) is difficult to optimize, due to the
constraints on J. Observing that Kβ provides the prior
knowledge for clustering, J is more likely to reach its
optimality with a closer gap between Kβ . Instead of setting
the maximal gap, θ, explicitly, we learn the real gap along
with clustering process, which formulates our final objective
as

min
H, β, J

1

n

n∑
i=1

[Tr(J(i)(Iµ(i) −H(i)H(i)>)) + β>M(i)β]

+
ρ

2
‖J−Kβ‖2F

s.t. H ∈ Rn×k, H>H = Ik, β
>1m = 1,

βp ≥ 0, ∀p, J � 0.
(18)

where M
(i)
pq = Tr(K

(i)
p K

(i)
q ), K(i) = S(i)>KS(i), J(i) =

S(i)>JS(i), S(i) ∈ {0, 1}n×µ(i)

indicates the µ(i)-nearest
neighbors of i-th sample where n is the number of all
samples, Iµ(i) is the identity matrix of size µ(i). The opti-
mal kernel, J, serves as a bridge to connect the clustering
process, i.e. the first term of Eq. (18), with the knowledge
obtaining process, i.e. the last item of Eq. (18). In this
circumstance, it explores the complementary information in
pre-specified kernels to help with clustering process, and
uses the information from clustering to help with weight
assignment of pre-specified kernels as a feedback.

3.2 Alternate optimization
In order to solve the objective in Eq. (18), we carefully design
a three-step iterative algorithm, in which two variables are
fixed while optimizing the other one.

i) Optimizing H with fixed J and β. Given J and β,∑n
i=1 β

>M(i)β and ‖J−Kβ‖2F are constants and Eq. (18)
can be reduced as follows.

min
H

1

n

n∑
i=1

Tr(J(i)(Iµ(i) −H(i)H(i)>))

s.t. H ∈ Rn×k, H>H = Ik, H(i) = S(i)>H

J(i) = S(i)>JS(i).

(19)



TO APPEAR IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MONTH XX, YEAR 2021 5

With defining A(i) = S(i)S(i)>, it can be further trans-
formed to

min
H

Tr[(
1

n

n∑
i=1

A(i)JA(i))(In −HH>)]

s.t. H ∈ Rn×k, H>H = Ik.

(20)

As seen from Proposition 1,
∑n
i=1 A(i)JA(i) is a positive

semi-definite matrix. Therefore, Eq. (20) is a standard kernel
k-means problem which can be efficiently solved by off-the-
shelf packages.

Proposition 1. Given a kernel matrix, J ∈ Rn×n, and a set of
sparse matrices, S = {S(i)}ni=1 where S(i) is defined in Eq.
(13), the matrix

∑n
i=1 A(i)JA(i), in which A(i) = S(i)S(i)>,

is a positive semi-definite matrix.
Proof. For such S(i), A(i) is a diagonal matrix sized n with

µ(i) ones. Donating P(i) = {i′ | A
(i)
i′i′ = 1}, A(i)JA(i) is

a n × n matrix G(i) with G
(i)
i′j′ = Ji′j′ for {i′, j′} ∈ P(i)

and G
(i)
i′j′ = 0 for {i′, j′} /∈ P(i). In such setting, G

(i)
i′j′

for {i′, j′} ∈ P(i) is a smaller kernel matrix of sample pairs
indexed in P(i), whose eigenvalues are greater than or equal to
0, demonstrating that G(i) is a positive semi-definite matrix.∑n
i=1 A(i)JA(i) is the sum of G(i) for i = {1, 2, · · · , n},

therefore contributes to a positive semi-definite matrix.

ii) Optimizing J with fixed β and H. With given β and
H, the optimization problem can be rewritten as

min
J

1

n

n∑
i=1

Tr(J(i)(Iµ(i) −H(i)H(i)>)) +
ρ

2
‖J−Kβ‖2F

s.t. J � 0.
(21)

which, by defining G = 1
n

∑n
i=1(S(i)S(i)>) = 1

n

∑n
i=1 A(i),

can be further transformed into

min
J
‖J−B‖2F

s.t. B = Kβ −
1

ρ
G(In −HH>)G,

J � 0.

(22)

Eq. (22) can be solved by finding the projection of B in
PSD space. It is claimed in Theorem 2 of [10] that the
optimization is able to be written as J = UBΣ+

BV+
B , where

B = UBΣBV>B is the singular value decomposition (SVD)
and ΣB

+ is a diagonal matrix which keeps the non-negative
values of ΣB .

iii) Optimizing β with fixed J and H. With given J and
H, the optimization problem can be reduced into

min
β

1

n

n∑
i=1

β>M(i)β +
ρ

2
‖J−Kβ‖2F

s.t. β>1m = 1, βp ≥ 0, ∀p.
(23)

which can be transformed into

min
β

β>(
1

n

n∑
i=1

M(i) +
ρ

2
M)β + α>β

s.t. M(i)
pq = Tr(K(i)

p K(i)
q ), Mpq = Tr(KpKq),

α = [α1, · · · , αm], αp = −ρTr(JKp).

(24)

Algorithm 1 optimal neighborhood multiple kernel cluster-
ing with adaptive local kernels
Input: {Kp}mp=1

Parameters: ρ and ζ
Output: H and β

1: Initialize β(1) = 1m/m, J(1) = Kβ(1) and t = 1.
2: Generate S(i) for i-th sample with Kβ(1) and the simi-

larity threshold ζ .
3: while (objt+1 − objt)/objt ≥ σ do
4: Kβ(t) =

∑m
p=1 β

(t−1)
p Kp.

5: Optimize H(t+1) with J(t) and β(t) via Eq. (20).
6: Optimize J(t+1) with β(t) and H(t+1) via Eq. (22).
7: Optimize β(t+1) with J(t+1) and H(t+1) via Eq. (24).
8: t = t+ 1.
9: end while

10: return H(t) and β(t)

Obviously, 1
n

∑n
i=1 M(i) + ρ

2M can be proven positive
semi-definite, for it is a linear positive combination of
positive semi-definite matrices, i.e. M and {M(i)}ni=1, as
seen in Proposition 2. Therefore, Eq. (23) is a quadratic
programming with linear constraints and can be sufficiently
solved by off-the-shelf packages.

Proposition 2. Given a set of positive semi-definite matrices,
K = {K}mi=1, the matrix, M ∈ Rm×m, in which {Mpq =
Tr(KpKq)}mp,q=1, is positive semi-definite.

Proof. For any vector x ∈ Rm×1, x>Mx =
Tr(K>sumKsum) = ‖Ksum‖2f ≥ 0, where Ksum =
x1K1 + x2K2 + · · · + xmKm, illustrating matrix M is
positive semi-definite.

In summary, the proposed iterative algorithm to solve
the resultant optimization problem in Eq. (18) is outlined
in Algorithm 1. ρ is the trade-off between the clustering
process and weight assigning process, while ζ controls
the similarities among sample pairs in local kernels. The
two parameters are supposed to be specified in advance.
Nevertheless, σ is the stopping gap and should be set to a
relatively small value.

3.3 Convergence and complexity

Convergence of the proposed iterative algorithm is theo-
retically guaranteed and clarified as following. For a brief
expression, we represent the objective in Eq. (18) with
Obj(H,β,J). When the initialization is done at the begin-
ning of the algorithm, the value of Obj(H,β,J) is set to a
definite value. Let H(t), β(t) and J(t) be the solution at the
t-th iteration.

i) Optimizing H with fixed J and β. With the obtained
solution written as H(t+1), we have

Obj(H(t+1),β(t),J(t)) ≤ Obj(H(t),β(t),J(t)). (25)

ii) Optimizing J with fixed β and H. With the obtained
solution written as J(t+1), we have

Obj(H(t+1),β(t),J(t+1)) ≤ Obj(H(t+1),β(t),J(t)). (26)
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iii) Optimizing β with fixed J and H. With the obtained
solution written as β(t+1), we have

Obj(H(t+1),β(t+1),J(t+1)) ≤ Obj(H(t+1),β(t),J(t+1)).
(27)

Together with Eq. (25), (26) and (27), we have

Obj(H(t+1),β(t+1),J(t+1)) ≤ Obj(H(t),β(t),J(t)). (28)

which indicates Eq. (18) monotonically decreases with iter-
ations. At the same time, Eq. (18) is lower bounded by zero.
Therefore, the iterative algorithm is theoretically guaranteed
to converge.

While optimizing H in Eq. (20), A(i) is a diagonal matrix
sized n with µ(i) ones, resulting in that

∑n
i=1 A(i)JA(i) =

(
∑n
i=1 A(i)) � J in which � is the Hadamard product. Its

complexity is O(n2), and the complexity of standard kernel
k-means is O(n3), with the overall complexity O(n3 + n2).
Similarly, computing B in Eq. (22) needs O(n2). The SVD
decomposition needs O(n3). In sum, O(n3 +n2) is required
to solve J. In Eq. (24), the calculation of M needs O(m2n2),
while O(m2µ(i)2) is required for M(i). The resultant
quadratic programming problem needs O(m3). Overall, the
complexity of solving β is O(m2n2 +m2

∑n
i=1 µ

(i)2 +m3).
In our implementation, M and {M(i)}ni=1 are calculated in
advance and keep the same during the whole optimization
process. Therefore, the whole computation complexity is
O(n3). The proposed algorithm shares the same compu-
tation complexity with the comparative methods [7], [9],
[10], [13], [17], [18], [18], [33], but achieves state-of-the-art
performances as shown in Table 2, verifying its superiority.

4 GENERALIZATION BOUND

In this section, we analyze the generalization bound of
the proposed algorithm, and show how our objective con-
tributes to a relatively lower bound. The proof details are
provided in the supplementary material.

Generalization bound for k-means algorithms indicates
how well the clustering centroids obtained in learning pro-
cess perform in the test stage [34], [35]. With the combination
weights β learned from the proposed model, the clustering
centroids C ∈ Hk can be found in the corresponding Hilbert
space, where sample x of m views is mapped into φβ(x) =
[
√
β1φ

>
1 (x(1)),

√
β2φ

>
2 (x(2)), · · · ,

√
βmφ

>
m(x(m))]>. If data

samples are given in batches, i.e. x = {xi}li=1, the recon-
struction error is supposed to be

E

[
1

l

l∑
i=1

min
y∈{e1,...,ek}

ai ‖φβ (xi)−Cy‖2H

]
, (29)

in which {e1, · · · , ek} are the orthogonal bases of Rk. ai
equals to the neighbor number of i-th sample. In other
words, ai = |Ni|, where Ni = {j | φβ(xi)

>φβ(xj) ≥ ζ}.
Eq. (29) is also compatible with testing on single sample via
setting l = 1, reducing to

E
[

min
y∈{e1,...,ek}

‖φβ (x)−Cy‖2H
]
. (30)

With removing the constraint, H>H = Ik, in Eq. (18) of
the manuscript, we can define a function class

F = {f : x 7→ 1

l

l∑
i=1

min
y∈{e1,...,ek}

ai ‖φβ (xi)−Cy‖2H |

β>1 = 1, βp ≥ 0, φ>p (x
(p)
i )φp(x

(p)
j ) ≤ b,

∀p ∈ {1, · · · ,m},∀xi, xj ∈ X ,C ∈ Hk}.
(31)

Theorem 1. For the given samples of n batches and any δ > 0,
with probability at least 1− δ, the following holds for all f ∈ F :

E[f(x)] ≤ 1

n

n∑
i=1

f(xi) +
2b
√

2π

n
√
l

(
G1n +

√
2G2n + G3n

)

+4bNmax

√
ln 1/δ

2n
.

(32)

where

G1n = Eγ

 n∑
j=1

l∑
i=1

γjiNmax

 ,
G2n = Eγ

 n∑
j=1

l∑
i=1

k∑
r=1

γjirNmax

 ,
G3n = Eγ

 n∑
j=1

l∑
i=1

k∑
r,s=1

γjirsNmax


(33)

and Nmin = minn,lj,i=1 a
(j)
i , Nmax = maxn,lj,i=1 a

(j)
i ,

γji, γjir, γjirs, j ∈ {1, · · · , n}, i ∈ {1, · · · , l}, r, s ∈
{1, · · · , k}, are i.i.d. Gaussian random variables with zero mean
and unit standard deviation.

The detailed proof of Theorem 1 can be found in the ap-
pendix. With further relaxation on Eq. (33), we have G1n ≤
Nmaxl

√
n, G2n ≤ Nmaxlk

√
n and G3n ≤ Nmaxlk

2
√
n,

which implies the proposed algorithm have generalization
bound of O(

√
1/n). From the definition of f(x) in Eq. (31),

we have

E [f(x)] = E

[
1

l

l∑
i=1

min
y∈{e1,...,ek}

ai ‖φβ (xi)−Cy‖2H

]
(34)

which is the reconstruction error expectation as shown in
Eq. (29). According to Theorem 1, 1

nf(xi) is supposed to
be as small as possible. For given samples, {x}li=1, the
following inequality holds

f(x) ≤ min
H, β

1

l

l∑
i=1

[
Tr(K

(i)
β (Iµ(i) −H(i)H(i)>))

]
(35)

because the proposed algorithm takes a extra constraint,
H>H = Ik, resulting that the learned C and β are not
optimal for f(x). Therefore, minimizing the objective pro-
vides a small bound for 1

n

∑n
i=1 f(xi) and is advantageous

to model generation.
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5 EXPERIMENT

In this section, we conduct extensive experiments on various
benchmark datasets to evaluate the proposed algorithm and
compare its performances with typical MKC algorithms in
recent literatures. In addition, we experimentally show that
the performance is boosted from two aspects simultane-
ously, i.e. adaptive local kernel and optimal neighborhood kernel.
Furthermore, parameter sensibility and convergence of the
proposed algorithm is validated. Finally, we evaluate its
performances on additional datasets with a new criterion,
verifying its effectiveness sufficiently.

5.1 Datasets and comparative algorithms

Six benchmark datasets of various categories are employed
to evaluate the effectiveness of the proposed algorithm.
They are Flower1021 [36], Digital2 [37], Caltech1013 [38],
Protein Fold4 [39], Cornell5 [40] and AR10P6 [41]. The cor-
responding kernel matrices are selected from recent mul-
tiple kernel clustering literatures [18], [33], [42], instead of
generating by ourselves. This prevents from generating the
kernel matrices, on which only our algorithm achieves good
performances, in purpose. In specific, kernel matrices of
Protein Fold are generated by following the technique in
[43], in which the second order polynomial kernel and inner
product (cosine) kernel are applied to the first ten feature
sets and the last two feature sets, respectively. Meanwhile,
the others are generated by applying RBF kernel on every
feature. Furthermore, the detail information, including ker-
nel size, kernel number and class number, is listed in Table
1.

TABLE 1: Specifications of used datasets.

Dataset
Number of

ML tasks
Samples Kernels Clusters

Flower102 8189 4 102 image clustering

Digital 2000 3 10 image clustering

Caltech101 1530 25 102 object detection

Protein Fold 694 12 27 medical research

Cornell 195 2 5 linguistics

AR10P 130 6 10 face recognition

Along with the proposed algorithm, we ran another
ten typical MKC algorithms in recent literatures, i.e. Av-
erage Multiple Kernel k-means (AMKKM) by assigning
pre-specified kernels with same weights uniformly, Single
Best Kernel k-means (SBKKM), Multiple Kernel k-means
(MKKM) [13], Robust Multiple Kernel k-means (RMKKM)
[17], Co-regularized Spectral Clustering (CRSC) [7], Robust
Multi-view Spectral Clustering (RMSC) [9], Robust Multiple
Kernel Clustering (RMKC) [10], Multiple Kernel k-Means
Clustering with Matrix-Induced Regularization (MKCMR)

1. http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/
2. http://ss.sysu.edu.cn/py/
3. http://files.is.tue.mpg.de/pgehler/projects/iccv09/
4. http://mkl.ucsd.edu/dataset/protein-fold-prediction
5. http://lamda.nju.edu.cn/code PVC.ashx
6. http://featureselection.asu.edu/

[18], Multiple kernel clustering with local kernel alignment
maximization (LKAM) [26] and Optimal Neighborhood
Kernel Clustering with Multiple Kernels (ONKC) [33]. We
implement the codes of AMKKM, SBKKM and MKKM,
while codes of the others are publicly available in authors’
websites, and we adopt them directly.

5.2 Experiment settings
At the initialization stage, the pre-specified kernel matri-
ces are centered, for better performance can be achieved
by using centered ones comparing with original ones, as
claimed in [24]. Next, we perform normalization on them so
as to better specify the range of similarity values between
sample pairs into [−1, 1]. Kernel matrices and class num-
bers are assumed known in advance. Three well-established
measurements, i.e. accuracy(ACC), normalized mutual in-
formation(NMI) and purity, are computed to evaluate the
clustering performance.

There are two hyper-parameters, ρ and ζ . ρ is the trade-
off between the adaptive local kernel and the optimal neighbor-
hood kernel, and indicates which one is more important than
the other one or they are equally weighted (the special case
when ρ = 2). At the same time, ζ controls the similarity
values between sample pairs in local kernel matrices by
selecting closer sample vertices around i-th sample. Grid
search technique is performed to select the two parame-
ters, where ρ and ζ varies in 2.ˆ[−15, −14 · · · , 15] and
[−0.5, −0.4 · · · , 0.5], respectively.

5.3 Experiment results
In the beginning, the proposed ON-ALK algorithm and the
comparative ones are tested on six benchmark datasets. The
ACC, NMI and purity are calculated and reported in Table
2, where the best results are marked in bold. We have the
following observations:

1) The proposed algorithm holds the best results
among the eleven algorithms in three measure-
ments. Specifically in ACC, it exceeds the second-
best algorithm by 3.88% on Flower102, 0.25% on
Digital, 2.13% on Caltech101, 1.35% on Protein Fold,
3.59% on Cornell and 1.54% on AR10P. In NMI, it
outperforms the second-best by 1.09% on Flower102,
0.6% on Digital, 1.28% on Caltech101, 0.88% on Pro-
tein Fold, 3.91% on Cornell, while drops back to
the second with only 0.43% lower than SBKKM. In
purity, it performs better than the other algorithms
by 3.42% on Flower102, 0.25% on Digital, 2.81% on
Caltech101, 3.02% on Protein Fold, 0.51% on Cornell
and 1.54% on AR10P, respectively.

2) AMKKM and SBKKM, the baselines of multiple ker-
nel clustering, outperform some other recently pro-
posed algorithm. However, the proposed algorithm
has a consistently and notably better performance
over the two algorithms. For instance, it exceeds
AMKKM by 18.15%, 2.48%, 7.55%, 9.94%, 8.2% and
6.16% on six datasets in ACC.

We also investigate the effect of class number on clus-
tering performance via conducting experiments with big
datasets, such as Flower102. Figure 2 presents the ACC,
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Fig. 2: ACC, NMI and purity variation with number of classes on four datasets, i.e. Flower102, Digital, Caltech101 and Protein
Fold. The other two datasets, Cornell and AR10P, are not reported for they are composed of a small number of classes and
samples. The comparative algorithms are consistent to Table 2, including AMKKM, SBKKM, MKKM [13], RMKKM [17],
CRSC [7], RMSC [9], RMKC [10], MKCMR [18], LKAM [26] and ONKC [33].
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TABLE 2: ACC, NMI and purity of eleven algorithms on six benchmark datasets.

Dataset AMKKM SBKKM
MKKM CRSC RMSC RMKC RMKKM MKCMR LKAM ONKC

Proposed
[13] [7] [9] [10] [17] [18] [26] [33]

ACC

Flower102 27.29 33.13 21.96 36.79 30.66 33.54 28.17 39.91 40.84 41.56 45.44

Digital 88.75 75.40 47.00 85.60 80.30 88.90 41.05 87.45 96.05 91.00 96.30

Caltech101 35.56 33.14 34.77 33.33 31.5 35.56 29.67 34.84 33.58 35.91 38.04

Protein Fold 30.69 34.58 27.23 35.59 30.12 28.82 26.37 36.02 39.34 39.19 40.63

Cornell 52.31 53.85 41.54 48.21 45.13 52.31 43.59 53.85 56.92 53.33 60.51

AR10P 38.46 43.08 40.00 36.15 30.00 38.46 31.54 40.77 32.31 41.54 44.62

NMI

Flower102 46.32 48.99 42.30 53.44 50.90 49.73 48.17 57.27 57.60 59.13 60.22

Digital 80.59 68.38 48.16 74.95 79.20 80.88 46.85 79.51 91.27 83.95 91.87

Caltech101 59.90 59.07 59.64 58.20 58.40 59.90 55.86 60.38 58.78 59.40 61.66

Protein Fold 40.96 42.33 37.16 45.66 41.49 41.39 32.30 43.85 46.88 45.78 47.76

Cornell 36.60 35.53 4.72 19.64 24.01 36.60 9.22 37.55 39.52 37.55 43.43

AR10P 37.27 42.61 39.53 36.76 27.40 37.27 26.15 37.35 28.76 37.79 42.18

Purity

Flower102 32.28 38.78 27.61 42.83 36.62 38.87 33.86 46.39 48.21 47.64 51.63

Digital 88.75 76.10 49.70 85.60 82.10 88.90 44.60 87.45 96.05 91.00 96.30

Caltech101 37.12 35.10 37.25 35.75 33.27 37.12 31.70 37.19 35.35 37.14 40.00

Protein Fold 37.18 41.21 33.86 42.07 37.61 38.33 30.84 42.07 46.11 43.95 46.97

Cornell 67.69 66.15 45.64 53.33 60.51 67.69 47.18 68.21 69.23 68.21 69.74

AR10P 39.23 43.08 40.00 36.92 30.77 39.23 33.08 42.31 33.08 42.31 44.62

TABLE 3: ACC, NMI and purity of LKAM, ON-LK and ON-ALK algorithms on six datasets.

Flower102 Digital Caltech101 Protein Fold Cornell AR10P

ACC

LKAM [26] 40.84 96.05 33.58 39.34 56.92 32.31

ON-LK 43.44 96.30 37.22 41.5 57.44 38.46

Proposed 45.44 96.30 38.04 40.63 60.51 44.62

NMI

LKAM [26] 57.6 91.27 58.78 46.88 39.52 28.76

ON-LK 59.95 91.65 61.52 48.85 40.82 31.8

Proposed 60.22 91.87 61.66 47.76 43.43 42.18

Purity

LKAM [26] 48.21 96.05 35.35 46.11 69.23 33.08

ON-LK 51.18 96.30 39.62 47.69 70.26 38.46

Proposed 51.63 96.30 40.00 46.97 69.74 44.62
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Fig. 3: Objective values at each iteration with ρ = 2.ˆ−1 and ζ = 0 on six datasets, i.e. Flower102, Caltech101, Digital, Protein
Fold, Cornell and AR10P. It can be seen that the objectives monotonically decrease and converge to minimums with a small
number of iterations.

NMI and purity variation with number of classes. Flower102
and Caltech101 both have 102 classes, therefore, we calculate

the three measurements when increasing the class number
by 10. For Digital and Protein Fold, there are 10 and 27
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classes each, so we gradually increase the class number by
1 and 3, respectively. The results show the proposed algo-
rithm, together with the others, decreases gradually with
increasing the class number, except the ones on Flower102.
On Flower102, the proposed algorithm also shows a sim-
ilar trend with the others, in which the three measure-
ments firstly drop to minimums and further increase. But,
generally, the proposed algorithm has a better clustering
performance over the others in recent literatures not only
on datasets of few classes but also on those of large class
number. The proposed algorithm shows relatively weaker
ACC, NMI and purity than SBKKM on Protein Fold with
setting the class number to 3. We think the small datasets
introduce more randomness and not rich enough to describe
the sample distribution. At the same time, the proposed
algorithm still outperforms the most ones, verifying its
effectiveness.

The proposed ON-ALK algorithm improves the perfor-
mance of MKC algorithm from two aspect, i.e. the adaptive
local kernel and the optimal neighborhood kernel. For the sake
of sufficiently illustrate the effectiveness of these regulariza-
tions, we make a minor change on the proposed algorithm
by keeping sizes of all local kernels the same and name it
as ON-LK. In this case, whether locating the optimal kernel
in neighborhood areas of linear combinations becomes the
only difference between ON-LK and LKAM proposed in
[26]. At the same time, whether employing the adaptive
local kernels is also the only distinction between ON-LK
and ON-ALK. Experiments are carried out on the afore-
mentioned three algorithms and the three clustering mea-
surements, including ACC, NMI and purity, are gathered in
Table 3. We mark the biggest values in red and the middle
ones in bold, while leaving the minimums unmarked.

From the first perspective, we compare the performances
of LKAM and ON-LK algorithm in Table 3. The ON-LK
algorithm significantly outperforms LKAM on six datasets
in ACC, i.e. 2.60% on Flower102, 3.64% on Caltech101, 0.25%
on Digital, 2.16% on Protein Fold, 0.52% on Cornell and
6.15% on AR10P. Similar results are achieved in NMI and
purity, demonstrating the effectiveness of optimal neighbor-
hood kernel. By extending the domain of optimal kernel
from weighted combinations of pre-specified kernels to
their neighborhood areas, the proposed algorithm enlarges
the kernel search range, resulting in the improvement of
clustering performance.

From the second perspective, although the results on
Protein Fold of the proposed algorithm are slightly weaker,
i.e. 0.87% lower than ON-LK in ACC, it achieves better
performances over the ON-LK algorithm in most cases,
specifically, by 2.00% on Flower102, 3.07% on Cornell and
6.16% on AR10P in ACC, illustrating the superiority of
the adaptive local kernel. The proposed algorithm allows the
sample numbers of local kernels vary along with the density
around samples. This improvement removes the farther
sample pairs from local kernels, decreasing the unreliability
of aligning father sample pairs, therefore, obtains better
performances.

From the above analysis, it can be concluded that the
adaptive local kernel and relaxing the optimal kernel around
the linearly combined kernel can both improve the perfor-
mance of MKC algorithm.

5.4 Parameter study and convergence
We conduct parameter study on the two parameters in the
proposed algorithm. Fig. (4) reports the clustering perfor-
mances on Flower102 when varying one parameter with
the other fixed. It can be observed that ACC, NMI and
purity increase dramatically, reach the top near 2−1, then
slightly decrease while ρ gradually increases from 2−15 to
215 with ζ = 0. With fixing ρ at 2−1, the three metrics
keep steady when ζ ≤ −0.1, reach the top at ζ = 0,
then drop dramatically. At the same time, we also present
the results on Digital, as shown Fig. (5). The same trend
can be obtained when varying ρ, while the curves on ζ
show a slight difference, that the results increase at first.
By observing ACC, NMI and purity keep relatively stable
at ρ ∈ [2−5, 25] and ζ ∈ [−0.2, 0.1] on Flower102, Digital
and the others (not presented for limit of space), we rec-
ommend to set the two parameters in these ranges. This
parameter recommendation setting is also widely adopted
in current literatures, such as [18], [33], [42]. In addition,
we also explore a new approach to choose the parameters
on unlabeled datasets. Davies Bouldin (DB) [44] index is
an internal metric for evaluating clustering, which requires
no ground-truth class labels. The smaller it is, the better
clustering result is obtained. Therefore, we plot the -DB on
ρ ∈ 2.ˆ[−15,−14, · · · , 15] and ζ ∈ [−0.5,−0.4, · · · , 0.5],
as shown in Fig. (4) and (5). It can be observed that -DB
curves share the same trend with ACC, NMI and purity,
respectively. This indicates that users can also select ideal
parameters according to the internal metric DB in their
applications.

We also investigate the objective values of the proposed
algorithm at each iteration with ρ = 2−1 and ζ = 0,
as presented in Fig. (3). It shows that the objective value
monotonically and rapidly decreases along with the clus-
tering process, indicating the convergence of the proposed
algorithm. In most cases, the proposed algorithm converges
with fewer than twenty iterations.

5.5 Evaluation on additional datasets
In order to verify the effectiveness and generalization ability
on datasets of the proposed algorithm more sufficiently, we
conduct additional experiments on six new datasets [45],
including A [46], Birch [47], DIM [48], G2 [49], S [50] and
Unbalance [51], which are described in Table 5. Note that
there are too many subsets of G2, and the subset with
2 centroids and 1024 dimensions are used. Additionally,
we generate the corresponding kernel matrices with six
kernel mappings, such as linear, gaussian, etc. We also adopt
a new evaluation criterion, i.e. Centroid index (CI) [52],
which evaluates the difference between predicted clustering
centroids and the ground truth, reflecting the quality of the
clustering model. It counts at the cluster level how many
clusters are incorrectly solved, and CI=0 indicates perfect
cluster-level solution.

We report the performances in terms of CI in Table 4,
while the corresponding ACC, NMI and purity can be found
in Table 1 of the Appendix. Besides, if the proposed algorithm
achieves the best results, corresponding values are marked
in bold, or the best results are marked. Three observations
can be concluded as:
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TABLE 4: Centroid Index of eleven algorithms on additional datasets [45].

Dataset AMKKM SBKKM
MKKM CRSC RMSC RMKC RMKKM MKCMR LKAM ONKC

Proposed
[13] [7] [9] [10] [17] [18] [26] [33]

A1 0 0 10 0 9 0 5 2 0 0 0
A2 1 1 17 1 22 1 5 1 1 1 1
A3 4 3 38 3 28 4 6 4 3 4 3
Birch1 16 8 73 11 47 16 19 17 16 15 12
Birch2 15 15 64 12 29 15 19 12 15 12 10
DIM032 0 0 0 0 1 0 2 1 0 0 0
DIM064 1 0 1 0 2 0 2 0 0 0 0
DIM128 1 0 1 0 2 0 2 1 0 1 0
DIM256 2 0 0 0 2 1 2 2 0 2 0
DIM512 2 1 1 1 1 1 3 2 0 2 0
DIM1024 2 1 0 0 4 2 3 1 0 2 0
G2 0 0 0 0 0 0 0 0 0 0 0
S1 0 0 9 0 6 0 2 0 0 0 0
S2 0 0 9 0 8 0 1 0 0 0 0
S3 0 0 7 0 6 0 2 0 0 0 0
S4 0 0 5 0 8 0 2 0 0 0 0
Unbalance 4 4 4 3 4 4 4 4 4 4 4

Average 2.82 1.94 14.06 1.82 10.53 2.59 4.65 2.76 2.29 2.53 1.76
* Note: Average column is computed with the results of each algrithm on all datasets.

TABLE 5: Specifications of additional datasets [45].

Dataset Subset
Number of

Samples Clusters Dimensions

A
A1 3000 20 2
A2 5250 35 2
A3 7500 50 2

Birch
Birch1 10000 100 2
Birch2 10000 100 2

DIM

DIM032 1024 16 32
DIM064 1024 16 64
DIM128 1024 16 128
DIM256 1024 16 256
DIM512 1024 16 512
DIM1024 1024 16 1024

G2 G2 2048 2 1024

S

S1 5000 15 2
S2 5000 15 2
S3 5000 15 2
S4 5000 15 2

Unbalance Unbalance 6500 8 2

1) The proposed algorithm consistently outperforms
the other methods in CI, showing its effectiveness
and superiority.

2) The proposed algorithm achieves over 90% ACC,
NMI and Purity in most datasets, even 100% some-
times, verifying its effectiveness.

3) Although some comparative methods get better
performances in some datasets, the gaps between
them are so small, near 0.1%. This may result from
the simplicity of datasets. At the same time, the
proposed algorithm is much more stable than the
others, showing a better performance on Average
over all datasets.

6 DISCUSSION AND FUTURE WORK

This paper improves the performance of MKC algorithm via
constructing the adaptive local kernel acoording to sample
density information. While, Martin et al. also utilize the
density information but use it to enhance the original kernel
matrices [53]. We are going to explore its merits in the
further work. Nevertheless, It is a widely used approach
to construct a consensus kernel for clustering by linearly
combining a set of base kernels. With a step further, our
method locates the optimal one around the kernel combi-
nations. Meanwhile, some researchers claim that any dot-
product kernel can be defined as a linear combination of
polynomial kernels [54], [55], as shown in Theorem 2 in [56].
We are going to explore the properties of dot-product kernel
and construct the optimal kernel with a set of polynomial
kernels in the future work.

7 CONCLUSION

While the recently proposed MKC algorithms are able to
handle multiple kernel clustering, they usually do not suf-
ficiently consider the local density around individual data
samples and excessively limit the representation capacity of
the learned optimal kernel, leading to unsatisfying perfor-
mance. This paper proposes an algorithm, named optimal
neighborhood multiple kernel clustering with adaptive local
kernels, to address these issues. The proposed algorithm is
elegantly solved and its effectiveness and superiority are
well demonstrated via conducting comprehensive experi-
ments on benchmark datasets.
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