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Abstract

The recently proposed simple multiple kernel k-means (SimpleMKKM) provides an
elegant framework to optimally fuse multiple views of samples for clustering. Although
demonstrating improved clustering performance on various applications, we observe that
it indiscriminately forces the similarity constructed by features to be identically aligned
with the similarity constructed by pseudo-labels. Such a criterion does not sufficiently
consider the potential variation among kernel matrices, which could negatively affect the
clustering performance. To address this issue, we propose a localized SimpleMKKM which
only requires that the sub-similarity calculated by k-nearest neighbours of a sample be
aligned with the one generated by corresponding pseudo-labels. We show that this local-
ization can be encoded by element-wise multiplying each pre-specified kernel matrix with
a neighborhood mask matrix. We further parameterize the neighborhood mask matrix
as a quadratic combination of a group of pre-specified base neighborhood mask matrices,
and jointly learn the optimal coefficient together with the clustering tasks, learning to the
proposed parameter-free localized Simple MKKM. After that, we rewrite the resultant op-
timization as an optimal value function, prove its differentiability, and develop a reduced
gradient descent algorithm with proved convergence to solve it. Comprehensive experimen-
tal study on several benchmark datasets verifies its effectiveness, comparing with several
state-of-the-art counterparts in the recent literature.
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1. Introduction

Multiple kernel clustering (MKC) gives an subtle framework to assign samples into different
clusters by extracting complementary information from different sources (Xu et al., 2004;
Tang et al., 2009; Yu et al., 2012; Kumar and Daumé, 2011; Huang et al.; Peng et al.;
Liu et al., 2017a; Wang et al.; Zhou et al., 2020; Liang et al., 2020; Kang et al., 2020;
Zhang et al., 2015, 2020). Given a group of pre-defined kernel matrices, MKC integrates
the available multiple kernel information to distribute data samples with similar structures
or patterns into the same cluster, which has been substantially studied and commonly
applied into practice applications (Li et al., 2016; Liu et al., 2017b; Li et al., 2016; Wang
et al., 2019). For example, the work in (Chen et al., 2007) proposes a MKC algorithm
which acts as the nonlinear extension for traditional k-means clustering problem. (Yu
et al., 2012) proposes to iteratively optimize data coefficient and clustering assignment until
convergence. Moreover, the work in (Liu et al., 2016) proposes a multiple kernel k-means
clustering algorithm, which decreases the redundancy of the selected kernels by introducing
a matrix-induced regularization term. A local kernel alignment variant is then developed
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by sufficiently considering the variation among sample, which is experimentally verified to
improve the clustering result in (Li et al., 2016). By assuming an optimal kernel residing
in the neighborhood of the combined kernels, the work in (Liu et al., 2017b) proposes an
optimal neighborhood multiple kernel clustering algorithm, which improves the clustering
performance by enhancing the representability of the learned optimal kernel. Differently,
late fusion based multiple kernel clustering strategy seeks to exploit the complementary
information in kernel partition space to achieve consensus on partition level (Wang et al.,
2019). Specifically, the pioneering work in (Wang et al., 2019) proposes to maximally
align the multiple base partitions with the consensus partition, which enjoys considerable
algorithm acceleration and satisfactory clustering performance. Along this line, an effective
and efficient late fusion based algorithm is proposed in (Liu et al., 2019) to handle incomplete
multi-view data.

As a masterpiece of MKC, SimpleMKKM is recently proposed in (Liu et al., 2020).
Instead of jointly minimizing the kernel weights and clustering partition matrix, Sim-
pleMKKM takes a minimization on kernel weights and maximization on clustering partition
matrix optimization framework, leading to an intractable min-max optimization. After
that, it is equivalently transformed into a minimization problem and a reduced gradient
descent algorithm is taken to solve the resultant optimization. It is empirically observed
that the novel min-max formulation and new solving optimization algorithm attribute to
its improved clustering performance.

Although the recently proposed SimleMKKM bears the aforementioned merits, we ob-
serve that it strictly aligns the combined kernel matrix with an “ideal” similarity generated
by the clustering partition matrix in a global way. This could indiscriminately guide all
sample pairs to consistently align to the same ideal similarity. As a result, it does not effec-
tively handle the variation among samples and sufficiently consider local structures, which
could lead to unsatisfactory clustering performance. To solve this problem, we propose to
calculate the kernel alignment in a “local” manner, which only requires that the gener-
ated combined kernel be aligned with the ideal similarity matrix locally in the k-nearest
neighborhood of each sample. Such a localized alignment guides the clustering algorithm
to concentrate on closer sample pairs and avoid being affected by unreliable similarity
evaluation of relatively farther sample pairs. We derive the objective function of proposed
formulation based on the min-max optimization framework of SimpleMKKM. We show that
this localized variant can be encoded by element-wise multiplying each pre-specified kernel
matrix with a neighborhood matrix, which is crucial to improve the clustering performance.
However, how to construct an optimal neighborhood matrix for practical applications itself
is intractable, especially for unsupervised learning tasks. To address this issue, we further
parameterize the optimal neighborhood matrix as a quadratic combination of a group of
pre-specified base neighborhood matrices, and jointly learn its optimal coefficient together
with the clustering tasks, learning to the proposed parameter-free localized SimpleMKKM.
The resultant formulation induces a more difficult min-min-max optimization which is hard
to readily solve by existing alternate optimization. We reformulate it as an optimal value
function, prove its differentiability, and develop a reduced gradient decent algorithm with
guaranteed convergence to solve it. Extensive and substantial experimental results well
demonstrate the superiority of the proposed algorithm.

The main contributions of this work are summarized as follows,
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o We identify that the recently proposed SimpleMKKM is unable to effectively handle
the variation among kernel matrices for the first time, and develop a parameter-free
local kernel alignment criterion to address this issue.

e We uncover the theoretical connection between our proposed algorithm with Sim-
pleMKKM via an optimal neighborhood mask matrix, which is set as a quadratic
combination of a group of base neighborhood mask matrices. Further, we jointly
learn the optimal combination coefficient during clustering, obtaining a parameter-
free multi-view clustering algorithm.

e We develop a reduced gradient decent algorithm with proved convergence to efficiently
solve the resultant min-min-max optimization problem.

2. Related work

In this section, we briefly introduce multiple kernel k-means (MKKM) (Huang et al., 2012a)
and the recently proposed simple multiple kernel k-means (SimpleMKKM) (Liu et al., 2020),
which are closely related to our work.

2.1 Multiple Kernel K-means

Given X € R"*? with n and d the number of samples and feature dimensions, k-means
clustering aims to group X into k clusters. Let Z € {0,1}"** be a clustering assignment
matrix, where Z;, = 1 if x; belongs to the g-th cluster, other Z;; = 0. Its objective can be
presented as

. 1 n k 9
mlnz7{cq}§:l E Zizl Zq:l Ziq”xi B C‘IH (1)

in which Yk, Ziy = 1, Vi.

Considering that samples may not well clustered in its original space, they are usually
mapped into a reproducing kernel Hilbert space (RKHS) (Scholkopf and Smola, 2001) H
with a feature map ¢(+), i.e. ¢; = ¢(x;), and clustered by k-means in that space. Note that
the mapping function ¢(+) is usually implicitly defined, one can construct a kernel matrix
with K; ; = qﬁiT(i)j. Based on these definition, the objective function of kernel k-means can
be rewritten as

minggegnxe Tr (K (In - HHT)) st. H'H =1, 2)

in which H is termed clustering partition matrix and I is an identity matrix with size k.
It is well known that the performance of kernel k-means is largely dependent on the
choice of kernel matrix. By assuming that the optimal kernel K, can be expressed as a
combination of pre-specified base kernel matrices, the objective function in Eq. (2) can be
readily extended to multiple kernel k-means, with the objective as follows,
i in Tr(Ky(I-HH")) s.t. HHH=1
min min - Tr(Ky( ) s ks (3)
where A = {y € R™ | 370 7 =1, 9 >0, Vp} and Ky = >, 75K, In literature, a
two-step alternate optimization with proved convergence is developed to jointly optimize ~
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and H in Eq. (3). After obtaining the clustering partition matrix H, a standard k-means
algorithm is applied to compute the discrete cluster assignments.

2.2 SimpleMKKM: Simple Multiple Kernel K-means

Recently, it is empirically observed in (Liu et al., 2020) that the widely used min., ming
paradigm by existing MKKM may not be able to achieve promising clustering performance
in practical applications, sometimes or even worse than the averaged kernel k-means. This
inspires researchers to design new clustering models. Different from the widely used min~
ming learning paradigm of the existing MKKM (Yu et al., 2012), SimpleMKKM proposes
a novel min, maxyg optimization framework as follows,

minyea maxgegnxe Tr(K,HH') st. H'H = I;. (4)

In this formulation, A = {y € R™|3> 7% v, = 1,7 > 0, Vp}, Ky =371, Vo Ky, {Kp}i,
is a group of pre-specified kernel matrices, H is termed clustering partition matrix and I
is an identity matrix with size k.

This new minimization-maximization formulation makes Eq. (4) is hard to solve by
the widely used alternate optimization. Differently, SimpleMKKM firstly rewrites the min.
maxyy into a minimization problem w.r.t v, and proves the differentiability of the resultant
minimization. Specifically, the formulation in Eq. (4) can be equivalently rewritten as,

min’yEA \7(7)7 (5)
with
J(v) = {maxu Tr (H'K,H), st. H'H=1;}. (6)

By this way, the min,-maxg optimization is transformed to a minimization one, where its
objective J(7) is a kernel k-means optimal value function.

After proving the differentiability of J (), the authors in (Liu et al., 2020) show how
to calculate its gradient, and use the reduced gradient descent algorithm to decrease Eq.
(5). The optimization procedure of Eq. (4) is outlined in Algorithm 1. The ablation
study (Liu et al., 2020) on various benchmark datasets validates that the novel min,-maxgy
optimization and new optimization attribute to the improved clustering performance. (Liu
et al., 2020) for the detail.

3. Parameter-free Localized SimpleMKKM
3.1 The Proposed Formulation

Let h; (1 < i < n) denote the i-th row of the clustering partition matrix H. As seen from
Eq. (4), SimpleMKKM optimizes the alignment between K, and HH' in a global way.
That is, it indiscriminately aligns each Kj;; with an “ideal” value hz—hj, regardless of the
potential variation among kernel matrices. This would cause Kjjs with high variation to
be aligned with a same cluster label. A more reasonable criterion shall get rid of the less
reliable farther global similarity information in a high dimensional kernel space and in the
mean time concentrate more on consolidating the high confidence clustering predictions.



PARAMETER-FREE LOCALIZED SIMPLEMKKM

Algorithm 1 SimpleMKKM (Liu et al., 2020)

1: Input: {K,}",, k, t=1.

2: Initialize v(1) = 1/m, flag = 1.

3: while flag do

4:  compute H by solving a kernel k-means with K.
0T (v)

compute 22 (p =1,--. . m) and the descent direction d®.
p oy P

update v+ «— 4O L ad®.

if max |[v(+D —~(®)| < 1e — 4 then
flag=0.

end if

10: t<«—t+ 1.

11: end while

To fulfill this goal, we propose to align K, with HH' in a local way. Let SO ¢
{0, 1}mxround(Txn) (\7j) be a matrix indicating the round(r x n)-nearest neighbors of the i-th
sample, where 7 is the proportion of localization and round(-) is a rounding function. We
define a local alignment for the i-th sample as follows,

<S<i)TK75<z‘>’ s<i>THTHs<i>>F : (7)

where S(i)TK.YS(i) denotes taking elements from K~ according to the neighborhood of the -
th sample. As seen, this local alignment only requires that closer samples shall stay together,
which makes it better utilize the variation among kernels for clustering. By bringing the
local alignment in Eq. (7) to each sample, we get the objective function of the localized
SimpleMKKM as follows:

mingea maxgegno Tr (H' ( (i)K.,A(i)) H) st. H'H =14, 8)

i=1

where A = {y € R™[3 " 17, = 1,79, > 0, Vp}, Ky =371, 77K, and A0 = 8’
the neighborhood mask matrix of the i-th sample.

is

Theorem 1 The objection of the proposed localized Simple MKKM in Eq. (8) can be rewrit-
ten as follows.

Minyea maxgegnce Tr <HT (M ® K.) H) st. H'H =1, (9)

where M = " | A s termed the neighborhood mask matriz.
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Proof The objective function in Eq. (8) can be written as

Tr (HT (27_1 A@)K7A<i>) H)

1=

=3 (BT (AYK,AD) H)

=3 (AYsK,, A s (HHT) >F

=3 (AYeK, HHT>F (10)
= (X AY) oKy HET),

- <<M 2K, HHT>F

=T (H' (MaK,)H),

where ® denotes element-wise multiplication between two matrices. This completes the
proof. |

Theorem 1 builds the connection between SimpleMKKM and its local variant, and
uncovers that one can encode the localization by element-wise multiplying each K, with
M. On one hand, the local alignment in Eq. (9) can sufficiently consider the variation
among base kernels, which could help to improve the performance. On the other hand,
there is an extra hyper-parameter 7 controlling the size of each sample’s neighborhood,
which is required to be pre-specified. However, it is well recognized in literature that how
to choose a suitable hyper-parameter in practical clustering tasks itself is a tough task. It
could be better to let clustering algorithms automatically learn the hyper-parameters. To do
so, we parameterize the optimal neighborhood mask matrix M, as a weighted combination
of a group of pre-specified neighborhood mask matrices {Mp}é:17 ie, M, = Z;Zl ,uZ%Mp.
As a result, choosing a suitable M reduces to learning an optimal combination weight .

By substituting M in Eq. (9) with M,,, we obtain the objective of the proposed
parameter-free localized SimpleMKKM as follows,

min,ea mingce Mmaxgegnxr 1T (HT(M“ ® K,Y)H) st. HHH =1, (11)

where M, = 2221 ulz,Mp and @ = {u e RluTe; =1, u, >0, Vp}.

The objective in Eq. (11) has the following merits: i) It calculates the kernel alignment in
a local manner, which enables it to capture the variation among base kernel matrices, leading
to improved clustering performance. ii) The optimal hyper-parameter can be automatically
learned from data. These advantages make the proposed algorithm more practical for
applications. Though bearing such merits, the optimization in Eq. (11) is much more
difficult to optimize than SimpleMKKM. In the following, we develop a reduced gradient
descent algorithm to optimize it.

3.2 The Calculation of Reduced Gradient and Optimization Algorithm

To solve the optimization in Eq. (11), we first rewrite it as an optimal value function,
prove its differentiability, and calculate its reduced gradient. After that, we update the
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optimization variables with gradient descent. Specifically, we firstly rewrite Eq. (11) as
follows,

min 7(7) (12)

with
T(v) = {minueg maxggegnce Tt (HT(M“ ® KA,)H) st. H'H = Ik}. (13)

We firstly prove the differentiability of 7 (v) in Eq. (12). To achieve this goal, we have
the following Lemma 2.

Lemma 2 J(v) in Eq. (6) is convex w.r.t .
Proof For any v, 75 € A and 0 < o < 1, we have
T (oyy + (1= a)v,)
= {maxp T (H Koo, 110y, H), st HH=T,}
— {maxg T (R <Z::1 (a1p + (1= 0)y2p)° Kp) H) , st H'H=1;
< {maXH Tr (HT (Z:‘:l (a7, + (1 — a)r3)) Kp> H) , st H H= Ik}
{amaxy Tr (BT (Z:Zl 73,Kp ) H) + (1 - a) maxy Tr (HT (Z:Zl 23K, ) H), st H'H=T,}
aJ(m) + 1= a)T(v2)-

IN

(14)

This completes the proof. |

Based on Lemma 2, we conclude that the solution optimized by Algorithm 1 is the global
optimum. Given «, the optimization in Eq. (13) is equivalent to Eq. (4), which can be
readily solved by Algorithm 1, generating the global optimum. According to Lemma 2, we
have the following Theorem 3.

Theorem 3 T (v) in Eq. (12) is differentiable w.r.t . Further, %,5;7) = 27, Tr (H*T (M- ® K,)

H*), where (H*, p*) = {arg ming,ce maxgepnxr Tr (HT (M, @ Ky)H) s.t. H'H =1, }.

Proof Based on Lemma 2, we conclude that the solution of optimal value function in Eq.
(13) is unique with a given «. According to Theorem 4.1 in (Bonnans and Shapiro, 1998),
T(7) in Eq. (12) is differentiable w.r.t 4. Further, %éz) =27, Tr <H*T (M- ® K,) H*),
where (H*, u*) = {arg mingce maxgegnxs Tr (H' (M, ® Ky)H) st. HH=IL} ®R

In the following, we propose to solve the optimization in Eq. (12) with a reduced gradient
descent algorithm. We firstly calculate the gradient of 7 (v) according to Theorem 3, and
then update v with a descent direction by which the equality and non-negativity constraints
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on v can be guaranteed. To fulfill this goal, we firstly handle the equality constraint by
computing the reduced gradient by following (Liu et al., 2020; Rakotomamonjy et al., 2008).
Let 7, be a non-zero component of v and /7 () denote the reduced gradient of 7 (7). The
p-th (1 < p < m) element of /T () is

[T, = Tl - T vp ko (15)
d
. N (9T0) 0T
VT =2 o, 5 ) (16)

Following the suggestion in (Liu et al., 2020; Rakotomamonjy et al., 2008), we choose u
to be the index of the largest component of vector - which is considered to provide better
numerical stability.

We then take the positivity constraints on -« into consideration in the descent direction.
Note that -577 () is a descent direction since our aim is to minimize 7 (7). However,
directly using this direction would violate the positivity constraints in the case that there
is an index p such that v, = 0 and [/7 ()], > 0. In such a case, the descent direction for
that component should be set to 0. This gives the descent direction for updating ~ as

0 if v, =0and [VT(v)], >0
dp =4 —[VT(Y)l, ifrp>0andp#u (17)
—[vTW), ifp=u.
After a descent directiond = [dy,--- ,d,,] " is computed by Eq. (17), 7 can be calculated via
the updating scheme v < v + ad, where « is the optimal step size. It can be selected by a

one-dimensional line search strategy such as Armijo’s rule. The whole algorithm procedure
solving the optimization problem in Eq. (11) is outlined in Algorithm 2.

Algorithm 2 Parameter-free Localized SimpleMKKM
1: Input: {K,}7", {Mp}ézl and €.
2: Output: H and ~, p.
3: Initialize (0 = e,,/m, u(®) = ¢;/l and t = 1.

4: repeat
K . m (t—l) 2K
5: 7(75) - 2p:1 F)/p p-
6:  compute H and p by SimpleMKKM in Algorithm 1 with K_ ).
7:  compute %7(3) (p=1,---,m) and the descent direction d) in Eq. (17).
8. update v « 40 4 ad®,
9:  if max |yt — 4| < le — 4 then
10: flag=0.
11:  end if

12: t+—t+ 1.
13: end while

Note that with given ~, Eq. (13) has the global optimum. Under this condition,
the gradient computation in Theorem 3 is exact, and our algorithm performs reduced
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gradient descent on a continuously differentiable function 7 (v) defined on the simplex
{y e R™[3 7 9 =1, v > 0, ¥p}, which does converge to the minimum of 7 () (Rako-
tomamonjy et al., 2008), as validated by the experiments in Figure 4.

4. Experiments

4.1 Experimental Settings

A number of MKKM benchmark datasets are adopted to conduct the comprehensive ex-
periment, providing a good testbed to evaluate the performance of parameter-free local-
ized SimpleMKKM. They include Wdbc! 569/10/2, ProteinFold? 694/12/27, Flower17?
1360/7/17, Caltech* 1530/25/102, Handwritten® 2000/6/10, Flower102° 8189/4/102. The
three numbers above indicate the numbers of samples, kernels and clusters, respectively.
For example, Flower102 dataset has 8189 samples, 4 kernels and 102 clusters. The number
of samples, kernels and categories of these datasets show considerable variation, provid-
ing a good platform to compare the performance of different clustering algorithms. We
generate a group of base neighborhood mask matrices {Mp}fvzl according to the defini-
tion in Eq. (9). Since the neighbor number is defined by round(r x n), eight 7s, i.e.,
0.01,0.02,0.03,0.04,0.05,0.06,0.07, 1, are pre-defined to generate base neighborhood masks.

05 Wdbc ProteinFold 05 Flower17
0.4
0.4 0.4
” 03 Y
% 03 ‘% ‘% 03
= = =
E % E
5 02 § g 02
0.1 01 0.1
0 0 oL
B W QNS g s Wt NG g o
Caltech102 06 Flower102 Handwritten
0.15 :
04
05
2 204 203
£ 01 £ £
[ [} [}
= =03 =
2 g T02
< 0.05 Lo2 K
0.1
0.1
ll WL . .

0
192 53 192 53 193 53
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Figure 1: The kernel weights learned by different algorithms.

. http://archive.ics.uci.edu/ml/datasets/
http://mkl.ucsd.edu/dataset/protein-fold-prediction
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
http://www.vision.caltech.edu/ImageDatasets/Caltech101
http://archive.ics.uci.edu/ml/datasets/

. http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
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DATASET Ave-MKKM | MKKM | LMKKM | MKKM-MIR | LKAM LF-MVC | MKKM-MM | SMKKM | PROPOSED
ACC
WbBC 91.0 £ 0.0 |91.0 £ 0.0{91.0 £ 0.0| 81.5+ 0.0 |79.4 £ 0.0{91.0 £ 0.0] 91.0 £ 0.0 |90.5 £ 0.0|93.0 &+ 0.0
ProTEINFOLD | 29.0 £ 1.5 |27.0 £ 1.122.4 +£0.7| 34.7+£ 1.8 |37.7+1.2|33.0+ 1.4| 29.0+ 1.5 |34.7+1.9|37.1+1.6
FLOWERL7 50.8 £ 1.5 |44.9 +£2.4(37.5+1.6| 585+ 1.5 |50.0+ 0.8/61.0+ 0.7 50.8 £ 1.5 |59.5 £ 1.3]62.1 £ 0.7
CALTECH102 342+ 1.0 328+ 09279+ 0.8| 348+ 1.0 |323+1.0(344+ 13| 342+1.0 |35.8+0.7|37.8+ 0.7
HANDWRITTEN | 96.0 £ 0.0 |64.9 £ 2.4|65.0 £ 1.4| 88.7 £ 0.1 |[95.4 £3.5|95.8 £ 0.0] 96.0+ 0.0 [93.6 £ 0.0/95.9 £ 3.0
FLOWER102 27.1 £ 0.8 224+ 0.5 - 40.2 + 0.9 |41.4+0.8(384 +1.2| 27.1 £0.8 |42.5 + 0.8/42.7 £ 1.0
NMI
WbBC 55.2 + 0.0 |55.0 £ 0.0(55.0 £ 0.0| 36.3 £ 0.0 |34.2 £ 0.0[55.3 £ 0.0| 55.2 &£ 0.0 |54.3 £ 0.0| 62.5+ 0.0
ProTEINFOLD | 40.3 £ 1.3 [38.0 £ 0.6|34.7 £ 0.6| 43.7 +1.2 [46.2 +0.6|41.7 +1.1| 40.3 £ 1.3 |44.4 + 1.1|46.7 + 1.0
FLOWERL7 49.7 + 1.0 [449 +£1.5|38.8+1.1| 56.4 +0.9 |49.8 +0.6[58.9 +0.4| 49.7 £ 1.0 |57.8 £ 0.9|60.5 + 0.6
CALTECH102 59.3 £ 0.6 |58.6 £ 0.5(55.3 £0.5| 59.7 £ 0.5 |58.5+0.6[59.5 +0.6| 59.3 £0.6 [60.4 £ 0.5(62.3 £ 0.4
HANDWRITTEN | 91.1 £ 0.1 |64.8 +£1.6|64.7+£0.5| 79.4+£0.2 |91.8+£1.9(90.9+£0.1] 91.1 £ 0.1 |87.4+0.0/92.0+1.8
FLOWER102 46.0 £ 0.5 [42.7 £ 0.2 - 56.7 £ 0.5 |56.9 £ 0.354.9+0.4| 46.0 £ 0.5 |58.6 £ 0.5(/59.4 + 0.3
PuriTY
WbBC 91.0 £ 0.0 |91.0 £ 0.0{91.0 £ 0.0| 81.5+ 0.0 |79.4 + 0.0{91.0 £ 0.0 91.0 £ 0.0 |90.5 £ 0.0|93.0 &+ 0.0
ProTEINFOLD | 37.4 £1.7 |33.7+1.1|31.2+ 1.0 41.9+ 1.4 |43.7+0.8|393+1.5| 374+ 1.7 |41.8+1.5|44.3 +14
FLOWERLT7 51.9 £ 1.5 |46.2 +2.0(39.2 £ 1.3| 59.7 £ 1.6 |51.4 +0.7/62.4 +0.7| 51.9 £ 1.5 |60.9 £ 1.2|/63.4 £ 1.0
CALTECH102 36.2+ 1.0 {349 +0.9/29.6 +0.8| 36.8+0.8 |34.3+0.9[36.7+ 1.3| 36.2 £ 1.0 |38.0+ 0.7/40.4 + 0.8
HANDWRITTEN | 96.0 £ 0.0 |65.8 &£ 2.1|65.5 +£0.9| 88.7 £ 0.1 [95.4 £3.5|/95.8 £0.0| 96.0 £ 0.0 |93.6 £ 0.0|96.1 £+ 2.5
FLOWER102 323+ 06 [27.8 +0.4 - 46.3 + 0.8 |48.0 £ 0.6 [44.6 £ 0.8| 32.3 £ 0.6 |48.6 £ 0.7]49.6 + 0.7
RAND INDEX
WbBC 67.2 £ 0.0 |67.2 £0.0{67.2+0.0] 39.7+ 0.0 |34.5+0.0{67.2 £0.0] 67.2+ 0.0 |65.5+ 0.0|73.8 + 0.0
ProTEINFOLD | 14.4 £1.8 |12.1 £0.7| 7.8 £ 04 | 172+ 1.5 |20.1 £1.1|16.1 £ 1.5| 144 £+ 1.8 |17.6 + 1.9|20.3 £+ 2.0
FLOWER17 322+ 1.3 |27.2 +£1.8{206+1.1| 399+ 1.3 |31.6 +0.8{44.1 £ 04| 322+ 1.3 |41.5 £ 1.5|44.8 + 0.7
CALTECH102 184 +£0.9 |17.3 £0.7/13.4 +£0.8| 188 +£0.8 |16.8 £0.9(18.8 £ 1.0 184 + 0.9 |19.8 +£0.7|21.8 £ 0.7
HANDWRITTEN | 91.3 £ 0.0 |51.8 £2.3|50.4 £ 1.2 77.2 £0.2 |91.6 £3.5/91.0£ 0.1 91.3 £ 0.0 |86.5 £ 0.1/91.9 + 3.0
FLOWER102 155 £ 0.5 |12.1 £ 0.4 - 25,5+ 0.6 |27.2+0.6[25.5+ 1.0| 155+ 0.5 |28.5+ 0.8/28.8+ 0.9

Table 1: Empirical comparison of the proposed algorithm with baseline methods on eight
datasets in terms of ACC, NMI, Pur and RI. Boldface results indicate no statistical
difference from the best one.
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Figure 2: (a) The learned p by proposed parameter-free localized SimpleMKKM. (b) The
clustering performance with four different groups of mask matrices.
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For all benchmark datasets in the experiment, the cluster number £ is given and taken
as the input of algorithms. Four common clustering evaluation criteria, i.e., clustering
accuracy (ACC), normalized mutual information (NMI), purity and rand index (RI) are
adopted for algorithm validation. To alleviate the interference of randomness caused by
k-means, in the experiment, we repeat the testing procedure with random initialization for
50 times. Both the mean value and the variation of the 50 trials are reported.

For evaluating the effectiveness of the proposed algorithm, eight state-of-the-art multiple
kernel clustering algorithms are included for comparison.

e Average kernel (Avg-KKM). A consensus kernel is firstly constructed by linearly
combining the base kernels with equal weights and then taken as the input of kernel .

e Multiple kernel (MKKM) (Huang et al., 2012b). The linear combination weights
and the cluster indicating matrix are optimized simultaneously in a unified optimiza-
tion framework.

e Localized multiple kernel (LMKKM) (Go6nen and Margolin, 2014). A sample-
adaptive base kernel combination mechanism is introduced to enhance the perfor-
mance of MKKM.

e Multiple kernel with matrix-induced regularization (MKKM-MIiR) (Liu
et al., 2016). A matrix-induced regularization term is integrated to the MKKM learn-
ing to introduce diverse information preservation.

e Multiple kernel clustering with local alignment maximization (LKAM) (Li
et al., 2016). It learns the optimal kernel combination by aligning the ideal similarity
matrix with the combined kernel matrix within only the neighborhood district.

e Multi-view clustering via late fusion alignment maximization (LF-MVC)
(Wang et al., 2019). It proposes to first compute the base partitions within corre-
sponding data views and then integrated them into a united partition matrix.

¢ MKKM-MM (Bang et al., 2018). It proposes a ming-max, formulation that com-
bines different data views in the way indicating high within-cluster variance in the
consensus kernel space and then optimize the clusters through minimizing such vari-
ance.

e SimpleMKKM (SMKKM) (Liu et al., 2020). It extends the widely applied super-
vised alignment criterion to multi-kernel clustering and proposes a special min-max
clustering objective for kernel weights and cluster partition optimization.

The official implementations of the aforementioned algorithms are publicly available. Among
the compared algorithms, LKAM (Li et al., 2016), MKKM-MiR (Liu et al., 2016) and LF-
MVC (Wang et al., 2019) are not parameter-free. Following the recommended settings in the
corresponding papers, we run the released codes and tune the hyper-parameters carefully.
The best clustering results of these methods are reported.
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Figure 3: The evolution of the learned H by the proposed algorithm with iterations.

4.2
4.2.

Experimental Results

1 OVERALL CLUSTERING PERFORMANCE COMPARISON

Table 1 shows the ACC, NMI, purity and RI of all the aforementioned algorithms. From
Table 1, we have the following observations:

e The proposed parameter-free localized SimpleMKKM significantly outperforms the

algorithms with hyper-parameters, like LE-MVC (Wang et al., 2019). This demon-
strates the practicability and efficacy of our formulation.

SimpleMKKM (Liu et al., 2020), which adopts the similar min-max optimization
formulation with our proposed algorithm, achieves comparable or better clustering
performance then the algorithms with hyper-parameters on most benchmark datasets.
This superiority can be attributed to its novel formulation and optimization algorithm.

The proposed parameter free localized SimpleMKKM consistently and significantly
outperforms all compared algorithms. For example, it exceeds SimpleMKKM al-
gorithm by 8.2%,2.3%,2.7%,1.9%, 4.6%,0.8% and exceeds LF-MVC algorithm by
7.3%,5.0%,1.6%,2.8%,1.1%,4.5% in terms of NMI on six benchmark dataset, re-
spectively. The improvements in terms of other criteria are similar. These results well
illustrate the superiority of the proposed parameter free localized SimpleMKKM that
benefits from adaptively extracting the localized information of kernel matrix.

The proposed parameter free localized SimpleMKKM performs better than MKKM-
MiR (Liu et al., 2016), LKAM (Li et al., 2016) and LF-MVC (Wang et al., 2019), all of
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which have several hyper-parameters to tune attributed to regularization on the kernel
weights. Thus they need to take huge effort to choose the best hyper-parameters in
practice. And parameter tuning is very difficult or even impossible in real applications
where there is no ground truth. In contrast, the proposed algorithm is parameter-free.
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Figure 4: The objective of the proposed parameter free localized SimpleMKKM evolves
with iterations.

Besides inheriting the advanced formulation and new optimization from SimpleMKKM,
the proposed algorithm adaptively learns a local manner to calculate the kernel alignment,
which enables it to well handle the variation among kernels. These factors jointly lead to its
significant improvement over the alternatives on all datasets. In addition, we point out that
LMKKM (Gonen and Margolin, 2014) cannot get the results reported on some datasets
due to the out-of-memory error, which are caused by its cubic computational and memory
complexity.

4.2.2 KERNEL WEIGHT ANALYSIS

We further look into the kernel weights learned by all aforementioned algorithms on all
datasets. The results are plotted in Figure 1. As seen, the kernel weights learned by
MKKM, MKKM-MiR and LKAM are distributed very unevenly and are highly sparse on
almost all datasets. This sparsity would make the multiple kernel matrices insufficiently
exploited, leading to poor performance. For instance, the ACC of MKKM, MKKM-MiR
and LKAM on Flowerl7 is only 44.9% ,58.5% and 50.0%, respectively. In contrast, despite
the f1-norm constraint on ~, the kernel weights learned by the proposed parameter free
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localized SimpleMKKM are non-sparse on all datasets, which contributes to its superior
clustering performance. This non-sparsity of the learned kernel weights is attributed to
our new reduced gradient descent algorithm, which in turn is derived based on our new
min-max kernel alignment objective.

4.2.3 MASK MATRIX WEIGHT ANALYSIS

We also investigate the mask matrix weights learned by the proposed algorithm on all
datasets, and the results are plotted in sub-figure 2(a). As seen, the obtained g is non-
sparse, which indicates that each individual mask matrix contributes to the construction
of the optimal mask matrix. We also try four different groups of {Méq)}ézl (1 <q <4,
and the results are plotted in sub-figure 2(b). As seen, the performance of the proposed
algorithm is almost the same under different groups of {Mp}ézl. We believe that its
performance can be further improved by incorporating prior knowledge to constructing

base mask matrices, which is worth further exploring.

4.2.4 CONVERGENCE AND EVOLUTION OF THE LEARNED H

As proved in Section 3.2, our parameter-free localized SimpleMKKM is theoretically guaran-
teed to converge. To see this point in depth, we further plot the objective of parameter-free
localized SimpleMKKM with iterations on all datasets, as shown in Figure 4. We observe
that its objective is monotonically decreased and usually achieve convergence in fewer than
ten iterations on all datasets. Also, to reveal the clustering performance variation of the
learned H with the number of iterations, we calculate ACC, NMI, purity and RI at each
iteration, and report them in Figure 3. As observed, the clustering performance of our al-
gorithm firstly increases with the number of iterations, slightly oscillates and then remains
stable. The result also reveals the effectiveness and necessity of the learning procedure.

4.2.5 RUNNING TIME COMPARISON

Finally, we report the execution time of the all algorithms in experiment, as plotted in
Figure 5. We observe that besides greatly improving the clustering performance, the pro-
posed parameter-free localized SimpleMKKM also has the comparable time cost with other
counterparts.

5. Conclusion

While the recently proposed SimpleMKKM demonstrates promising clustering performance,
it does not think over the variation among base kernel matrices sufficiently. This paper pro-
poses to optimize the kernel alignment in a parameter-free localized manner to address
this issue. We firstly uncover the theoretical connection between SimpleMKKM and the
proposed algorithm. Based on this observation, we parameterize the neighborhood mask
matrix as a quadratic combination of a group of pre-specified base neighborhood mask ma-
trices, and jointly learn the optimal combination coefficient together with clustering tasks,
leading to an intractable tri-level optimization problem. We then build an efficient and
elegant algorithm with guaranteed convergence to solve it. The proposed parameter-free lo-
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Figure 5: Running time comparison of different algorithms on all datasets (logarithm in
seconds). The experiments are carried out on a PC with Intel(R) Core(TM)-i9-
10900X 3.7GHz CPU and 64G RAM in MATLAB R2020b environment.

calized SimpleMKKM demonstrates significantly increased clustering results via substantial
experiments on multiple benchmark datasets.
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