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Appendix of “SimpleMKKM: Simple Multiple
Kernel K-means”

Xinwang Liu, Li Liu, Jian Xiong, En Zhu, Junwei Han, Meng Wang, Dinggang Shen, and Wen Gao

1 SUMMARY OF THE APPENDIX

In this appendix, we provide the generalization analysis of
the proposed algorithm and give the detailed proof.

2 THE GENERALIZATION ANALYSIS

Let C = [Cy,---, Cy] be the learned matrix composed of
the k centroids and * the learned kernel weights by the pro-
posed SimpleMKKM, where C, = ﬁ Yee, 03(x5),1 <
¢ < k. By defining © = {ey,---,ey}, effective Sim-
pleMKKM clustering should make the following error small

1—E4 {maxy€@(<z§:,(x), Cy)Hk] , (1)

where ¢5(x) = [J1¢1 (X),,¥m®{ (x)]" is the learned fea-
ture map associated with the kernel function Kx(-,-) and
er, -+ ,e; form the orthogonal bases of R¥. Intuitively, it
says the expected alignment between test points and their
closest centroid should be high. We show how the proposed
algorithm achieves this goal.

Let us define a function class first:

F :{f t x = 1 — maxyee (@ (), Cy)ur

% > 0,C € HE, K, (x, %) < b, Vp,¥x € X},
@

where H* stands for the multiple kernel Hilbert space.

'yTlm =1,
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Theorem 1. For any 6 > 0, with probability at least 1 — 6, the
following holds for all f € F:

1 & \//2bk log1/0
E[f(x)] < ng(xi) + Y- +(1 +b)\/7.
®3)

3 PROOF oF THEOREM[]

In the following, we give the detailed proof of Theorem
For an i.i.d. given sample {x;}7,, SimpleMKKM algorithm
is to minimize an empirical error, i.e.,

n

1
1—— max <¢’Y(Xi)a Cyz)q.Lk ) (4)

n =Y €O
where ¢~ (x) = [y1¢] (X), -+ ,Ym®] (x)]" is the feature
map associated with the kernel function K4(-,-) and © =
{e1,---,e,} inwhich ey, - - , e form the orthogonal bases
of R¥.
Let

m 1 .
R(C,v, {Kphpt) =1 - Z;{lgg ((%:), CYi)ayr - (5)
i=1""
Our proof idea is to upper bound

(IE [R(C,’y, {Kp};nzl)} - R(077a {Kp};nzl)) )

(6)
and then upper bound the term R(C,~, {K,}p1) by the
proposed objective.

We assume that the kernel mapping of each kernel is
upper bounded, i.e., every entry of K, (p € {1,--- ,m}), is
no larger than b. Let us define a function class first:

sup
Cv'Ya{Kp};n:1

F :{f tx—1-— r;les’;g( (P~ (%), Cy) oy ~T1,, = 1,7 >0,

C e M, |Ky(x,%)| <b, Vp,Vx € X}7

@)
where H* stands for the multiple kernel Hilbert space.
Then, Eq. (6) becomes
1 n
sup | E[f(x)] =~ )  f(x ®)
fg( 6 = 5 o >>
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It is obvious that
03 (K)o (%) =D 1y (xP)dp (X))
= Zp:1 V2K, (x® x(P))

>-bY = bY

)

In the same way, it is easy to prove —b < ¢I (X)py(x) < b
For x in v-th cluster,

<¢7(X), CY>7-¢

(10)

As a result, we have f(x,%x) <1+ b.
By exploiting McDiarmid’s concentration inequality, we
have the following theorem [1].

Theorem 2. For any 6 > 0, with probability at least 1 — 6, the
following holds for all f € F:

1 & log1/6
E[f(x)] = = Y f(xi) < 2R, (F) + (1 +D) / ,
iz 2n
1)
where
Rn sup 12)
(F) = MZ } (
and o1, ..., 0y areiid. Rademacher random variables uniformly

distributed from {—1,1}.

Now, we are going to upper bound R, (F). Since there is
a maximization function in f, it is not easy to directly upper
R, (F). Similar to the proof method in [2], we upper bound
it by introducing Gaussian complexities:

G, (F) = %E [supfef le ﬁlf(xl)} )

where (1, ..., 3, are i.i.d. Gaussian random variables with
zero mean and unit standard deviation.
The following two lemmas [2] will be used in our proof.

F) < \J7/26,(F

Lemma 2. Let Gy = Y. ,B,G(x;,f) and Hy =

(13)

Lemma 1.
(14)

Soiy BiH (x4, f) be two zero mean, separable Gaussian process-
es. If forall fy, fo € F,

E[(Gp —Gp)?] E[(Hy, — Hp,)?. (15)
Then,

In our case, let

'y c = Zﬁz (1 — max <¢7(X1) Cyz>

€0
i—1 Yi

) a7

and
n k
Hyc =Y 61(x:)) BiCe,. (18)
i=1 v=1
we are going to prove that
EB [(G'Yltcl - G727C2)2} S Eﬂ I:(H'Ylvcl - H’YQvCZ)Q](' )
19

Specifically, for any fi, fo € F, we have

Kl RS (fry, (%), C1y>7-tk) - <1 ~ max (¢, (), C2y>Hk>} 2

2
= (rynea(3)<<¢~,1 (%), C1¥ )i — r;aggww (x), Czy>Hk>

yEeo
— (max (03, ()G - 0], (1C) y)2

L] (Z b (¢> 7,001 =63, ()C) )
C: -4, (X)Cz) e)

SyN(CY .

where the last inequality holds because 25:1 Yo = L.

< (a5 (o7, 901y ~ 67, 09C) )

2

Thus, we have

Eg [(G»ylpl - G72>C2)2i|
=Eg [(ijl Bi [(1
— (1 — maxy, co (P, (Xi), CQyi>H’“)} )2]

— maxy,ee (B, (Xi), Clyi>7{k)

2
max <¢‘yl Xz Clyl>’Hk - ;nax <¢‘72 (Xz C2y1>’Hk>

M:

((le (x:)C1 — ¢, (Xi)Cz) ev)2
=Eg [(Hy,.c, — H’72702)2} :

(21)
Using Holder’s inequality and Jensen’s inequality, we have

E [Supfef Hf] =Ep

sup Z Z Bivry (i Cev}

’71 1v=1
} (22)

<E, [bZ'Z B

v=1

< bky/n.
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Combining Lemmas [I] and P2} Egs. (1), and @22), we

have 1
R (F) < —4/7/2E[sup G
(F) < nV / [fep s.c]

e s
~\Jm/2 (bk/m)

v/ 2k
N

IN

IN

Putting the above inequality into Theorem [2} with probabil-
ity at least 1 — ¢, the following holds for all f € F:

1 & /7 /2bk log1/6
EU&”SnE:ﬂ&)+VM4(1+wV%m1'

(23)
This completes the proof.
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