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Self-Paced Clustering Ensemble
Peng Zhou , Liang Du, Member, IEEE, Xinwang Liu , Yi-Dong Shen , Mingyu Fan , and Xuejun Li

Abstract— The clustering ensemble has emerged as an impor-
tant extension of the classical clustering problem. It provides an
elegant framework to integrate multiple weak base clusterings
to generate a strong consensus result. Most existing clustering
ensemble methods usually exploit all data to learn a consensus
clustering result, which does not sufficiently consider the adverse
effects caused by some difficult instances. To handle this prob-
lem, we propose a novel self-paced clustering ensemble (SPCE)
method, which gradually involves instances from easy to difficult
ones into the ensemble learning. In our method, we integrate the
evaluation of the difficulty of instances and ensemble learning
into a unified framework, which can automatically estimate
the difficulty of instances and ensemble the base clusterings.
To optimize the corresponding objective function, we propose a
joint learning algorithm to obtain the final consensus clustering
result. Experimental results on benchmark data sets demonstrate
the effectiveness of our method.

Index Terms— Clustering ensemble, consensus learning, self-
paced learning.

I. INTRODUCTION

CLUSTERING is a fundamental unsupervised problem
in machine learning tasks. It has been widely used in

various applications and demonstrated promising performance.
However, according to [1], conventional single clustering algo-
rithms usually suffer from the following problems: 1) given
a data set, different structures may be discovered by various
clustering methods due to their different objective functions;
2) for a single clustering method, since no ground truth is
available, it could be hard to validate the clustering results;
and 3) some methods, e.g., k-means, highly depend on their
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initializations. To address these problems, the idea of a clus-
tering ensemble has been proposed.

Clustering ensemble provides an elegant framework for
combining multiple weak base clusterings of a data set to
generate a consensus clustering [2]. In recent years, many
clustering ensemble methods have been proposed [3]–[7]. For
example, Strehl et al. and Topchy et al. proposed informa-
tion theoretic-based clustering ensemble methods, respectively,
in [3] and [4]; Fern et al. extended graph cut method into
clustering ensemble [8]; and Ren et al. proposed a weighted-
object graph partitioning algorithm for clustering ensemble [9].

These methods try to learn the consensus clustering result
from all instances by taking advantage of diversity between
base clusterings and reducing the redundancy in the clustering
ensemble. However, since the base clustering results may
not be entirely reliable, it is inappropriate to always use all
data for clustering ensemble. Intuitively, some instances are
difficult for clustering or even outliers, which leads to the
poor performance of the base clusterings. At the beginning
of learning, these difficult instances may mislead the model
because the early model may not have the ability to handle
these difficult instances.

To tackle this problem, we ensemble the base clusterings
in a curriculum learning framework. Curriculum learning is
proposed by Bengio et al. [10], which incrementally involves
instances (from easy to difficult ones) into learning. The
key idea is that, in the beginning, the model is relatively
weak, and thus, it needs some easy instances for training.
Then, the ability of the model becomes increasingly strong
as time goes on so that it can handle more and more difficult
instances. Finally, it is strong enough to handle almost all
instances. To formulate this key idea of curriculum learning,
we propose a novel self-paced clustering ensemble (SPCE)
method, which can automatically evaluate the difficulty of
instances and gradually include instances from easy to difficult
ones into the ensemble learning.

In our method, we estimate the difficulty of instances with
the agreement of base clustering results, i.e., if many base
clustering results agree with each other in some instances,
these instances may be easy for clustering. We adapt this idea
to the ensemble method and propose a self-paced learning
method that evaluates the difficulty of instances automatically
in the process of the ensemble. On the one hand, easy instances
can be helpful to ensemble learning; on the other hand, with
the learning process, more and more instances become easy
for learning. Since the clustering result represents the relation
between two instances, i.e., it indicates whether two instances
belong to the same cluster or not, we transform all base
clustering results into connective matrices and try to learn
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a consensus connective matrix from them. We use a weight
matrix to represent the difficulty of all pairs in the connective
matrix, i.e., the larger the weight of a pair is, the easier to
decide whether such two instances belong to the same cluster
is. Then, we integrate the weight matrix learning and the
consensus connective matrix learning into a unified objective
function. To optimize this objective function, we provide a
block coordinate descent schema that can jointly learn the
consensus connective matrix and the weight matrix.

The extensive experiments are conducted on benchmark data
sets, and the results demonstrate the effectiveness of our self-
paced learning method.

This article is organized as follows. Section II describes
some related work. Section III presents in detail the main
algorithm of our method. Section IV shows the experimental
results, and Section V concludes this article.

II. RELATED WORK

In this section, we first present the basic notations and then
introduce some related works. Throughout this article, we use
boldface uppercase and lowercase letters to denote matrices
and vectors, respectively. The (i, j)th element of a matrix
M is denoted as Mij , and the i th element of a vector v is
denoted as vi . Given a matrix M ∈ R

n×d , we use �M�F =
(
�n

i=1
�d

j=1 M2
i j )

1/2 to denote its Frobenius norm. We use
�M�0 to denote its �0-norm, which is the number of nonzero
elements in M. Since �0-norm is nonconvex and discontinu-
ous, �1-norm is often used as an approximation of �0-norm.
�1-norm of M is defined as �M�1 = �n

i=1
�d

j=1 |Mij |.
A. Clustering Ensemble

Ensemble learning trains multiple learners and tries to
combine their predictions to achieve better learning perfor-
mance [11]. Since the generalization ability of the ensem-
ble method could be better than the base learners [12],
ensemble learning has been applied to various domains, such
as image analysis [13], [14], medical diagnosis [15], and
multiview data analysis [16]–[20]. At an early age, many
ensemble methods were designed for supervised learning,
in which the labels of training data were known. For exam-
ple, Freund and Schapire [21] proposed the famous AdaBoost
method that evaluated the base learners and then applied the
evaluation results to weight each base learner and change
the training data distribution; Friedman [22] proposed the
gradient boosting decision tree method that ensembled the
results of multiple decision trees. In these methods, the labels
of training data are necessary for eliminating the ambiguity
when combining the base learners [5].

However, in unsupervised learning, due to the lack of
training labels, it is more challenging to design the ensemble
methods. Moreover, as introduced earlier, conventional single
clustering methods often suffer from stable and robust
problems. Therefore, the clustering ensemble has attracted
increasing attention in recent years. At an early age, some
information theoretic-based methods are proposed. For
example, Strehl and Ghosh [3] first introduced the clustering
ensemble task and formalized clustering ensemble as a
combinatorial optimization problem in terms of shared mutual

information; then, Topchy et al. [4] combined clusterings
based on the observation that the consensus function of
clustering ensemble is related to classical intraclass variance
criterion using the generalized mutual information definition.

In this article, we follow the problem setting of clustering
ensemble defined in [3] and [4]. In more detail, let X =
{x1, x2, . . . , xn} be a data set of n data points. Suppose that
we are given a set of m clusterings C = {C1, C2, . . . , Cm} of
the data in X , each clustering Ci consisting of a set of clusters
{π i

1, π
i
2, . . . , π

i
k}, where k is the number of clusters in Ci and

X = �k
j=1 π i

j . Note that the number of clusters k could be
different for different clusterings. According to [2]–[4], the
goal of clustering ensemble is to learn a consensus partition
of the data set from the m base clusterings C1, . . . , Cm .

In recent years, to learn the consensus partition, more
and more techniques have been applied to ensemble base
clustering results. For example, Zhou and Tang [5] proposed
an alignment method to combine multiple k-means clustering
results. Some works applied the famous matrix factorization
to the clustering ensemble. For instance, Li et al. [23] and
Li and Ding [24] factorized the connective matrix into two
indicator matrices by symmetric nonnegative matrix factor-
ization. Besides k-means and matrix factorization, spectral
clustering was also extended into clustering ensemble tasks,
such as in [25]–[27]. Some methods introduced a probabilistic
graphical model into the clustering ensemble. For example,
Wang et al. [28] applied a Bayesian method to clustering
ensemble; Huang et al. [29] learned a consensus clustering
result with a factor graph. Since the clustering diversity and
quality are essential in ensemble learning, many methods made
full use of the diversity and quality to combine base cluster-
ings. For example, Abbasi et al. [30] proposed a new stability
measure called edited normalized mutual information (NMI)
and used it to ensemble base clusterings; Bagherinia et al. [31]
provided a fuzzy clustering ensemble by considering the
diversity and quality of base clusterings.

Besides these works that ensembled all base clustering
results, some works tried to select some informative and
nonredundant base clustering results for the ensemble. For
example, Azimi and Fern [32] proposed an adaptive clus-
tering ensemble selection method to select the base results;
Hong et al. [33] selected base clusterings by a resampling
method; Parvin and Minaei-Bidgoli [34], [35] proposed a
weighted locally adaptive clustering for clustering ensemble
selection; Yu et al. [36] transferred the clustering selection to
feature selection and designed a hybrid strategy to select base
results; Zhao et al. [37] proposed internal validity indices for
clustering ensemble selection; and Shi et al. [38] extended the
transfer learning into clustering ensemble leading to a transfer
clustering ensemble selection method.

In this article, we will propose a clustering ensemble method
based on connective matrices. Since the clustering result
represents the relation between two instances as introduced
earlier, from C, following [24], [39]–[42], we can construct
the connective matrix S(i) ∈ R

n×n for partition Ci as

S(i)
pq =

�
1, if xp and xq belong to the same cluster,
0, otherwise.
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The target of our clustering ensemble method is to learn a
consensus matrix S from S(1), S(2), . . . , S(m) and then obtain
the final clustering result from the consensus matrix S.
Traditional connective matrix-based methods [24], [39]–[42]
constructed coassociation matrix by linearly combining all
connective matrices and then obtain the consensus cluster-
ing result from coassociation matrix. Different from them,
which use all instances for the ensemble, we ensemble the
base clusterings in a curriculum learning framework, which
incrementally involves instances (from easy to difficult ones)
into ensemble learning.

B. Self-Paced Learning

Inspired by the learning process of humans,
Bengio et al. [10] proposed note of curriculum learning.
The idea is to incrementally involve instances into learning,
where easy instances are involved first and harder ones are
then introduced gradually. One benefit of this strategy is that
it helps alleviate the local optimum problem in nonconvex
optimization, as introduced in [43] and [44].

To formulate the key principle of curriculum learning
that gradually includes instances from easy to difficult ones,
Kumar et al. [45] proposed the self-paced learning. More for-
mally, given a data set D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
containing n instances, where xi ∈ R

d is the d-dimensional
feature vector of the i th instance and yi is its label,
L(yi , g(xi , θ)) is denoted as the loss function that indicates
the cost between the ground truth yi and the estimated label
g(xi , θ), where θ represents the model parameters in the
decision function g. According to [46] and [47], the self-paced
learning introduces a weighted loss term on all instances and
a general regularizer term on instance weights, which is in the
following form:

min
θ,w

n�
i=1

(wi L(yi , g(xi , θ )) + f (wi , λ)) (1)

where λ is an age parameter for controlling the learning
pace, wi is the weight of the i th instance, and f (w, λ)
is the self-paced regularizer. When fixing θ , supposing that
li = L(yi , g(xi , θ)) and w∗

i (λ, li ) is the optimum weight of
the i th instance, which is relative with λ and li , f (wi , λ)
should satisfy that w∗

i (λ, li ) is monotonically decreasing with
li and increasing with λ, as suggested in [48]–[50]. Since
w∗

i (λ, li ) is monotonically decreasing with li , easy instances,
which have low loss, will have large weight, which means that
we learn from these instances first. w∗

i (λ, li ) is monotonically
increasing with λ indicates that with the learning process
(λ grows), more and more instances are used for learning.

Therefore, the process of self-paced learning is to
optimize (1) via alternating minimization. Fixing θ and
solving w are to learn the weight of each instance; fixing w
and solving θ are to learn the model using the easy instances.
Due to the promising performance, self-paced learning has
been applied to handle many machine learning tasks, such
as multitask learning [51], [52] and robust classification
[53]. In this article, we will extend this self-paced learning
framework into unsupervised ensemble learning.

TABLE I

NOTATIONS AND DESCRIPTIONS USED IN OUR METHOD

III. SELF-PACED CLUSTERING ENSEMBLE

In this section, we provide the framework of our SPCE
method. The main notations and their descriptions used in this
section are shown in Table I.

A. Mining the Most Certain Information

As we know, self-paced learning gradually incorporates easy
to more complex samples into training. In our task, since we
handle m connective matrices S(1), S(2), . . . , S(m), the samples
are the data pairs appearing in S(i). To apply the self-paced
learning, we first find the easiest or the most certain data pairs.
Here, a voting method is used to find the most certain pairs.
Given any instance pair xp and xq , if all m connective matrices
agree that xp and xq belong to or not belong to the same
cluster, we regard this pair as the most certain pair. More
formally, we compute the coassociation matrix Ŝ as

Ŝ = 1

m

m�
i=1

S(i). (2)

It is easy to verify that for any 1 ≤ p, q ≤ n, we have
0 ≤ Ŝpq ≤ 1. Ŝpq = 1 indicates that all connective matrices
agree that xp and xq belong to the same cluster, and Ŝpq = 0
indicates that all connective matrices agree that they belong
to the different clusters. Thus, the most certain pairs are the
elements in Ŝ, which are either 1 or 0. To make the learned
consensus matrix S to preserve such certain information,
we directly set S as

Spq =
⎧⎨
⎩

1, if Ŝpq = 1,
0, if Ŝpq = 0,
missing, otherwise.

Therefore, the consensus matrix S can be learned by solving
a matrix completion problem, i.e., we fill the missing values
in S by self-paced consensus learning.

B. Self-Paced Consensus Learning

Since S is the consensus matrix, we wish to minimize
the disagreement between it and all connective matrices.
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A natural idea is to minimize
�m

i=1 �S − S(i)�2
F . However,

this objective treats all m clustering results equally, which
may be inappropriate. Intuitively, the quality of each clustering
result is different, and we wish the better clustering results
contribute more in the consensus learning. Thus, we can
modify the objective to

�m
i=1 αi�S − S(i)�2

F , where αi is
the weight of the i th base clustering result. Next, we should
decide the weight of each clustering result. Inspired by the
autoweighted technique proposed in [54] and [55], we can
define αi = (1/(�S − S(i)�F )), which means the closer S(i) to
the consensus matrix, the larger the weight of the i th clustering
result is. Thus, we obtain the following objective function:

min
S

m�
i=1

		S − S(i)
		

F

s.t. S � � = Ŝ � �, 0 ≤ Spq ≤ 1 ∀p, q (3)

where � ∈ R
n×n is an indicator matrix, whose element

�pq = 1 if Ŝpq = 0 or 1 and �pq = 0 otherwise. � is the
Hadamard product, which means the elementwise production
of two matrices. The constraint is to make sure that the
consensus matrix S preserves the certain information.

To modify (3) into the self-paced learning framework,
we should decide which data pairs are easy samples. Here,
we follow the idea of voting introduced before. Given a
data pair xp and xq , if most S(i) agrees with each other,
we believe that this pair is an easy pair. More formally,
the smaller

�m
i=1(Spq−S(i)

pq )2 is, the easier the pair (xp, xq) is.
To this end, we introduce a weight matrix W whose element
0 ≤ Wpq ≤ 1 indicates the weight of the pair (xp, xq).
The larger Wpq is, the easier this pair is. Then, following
the self-paced learning framework, we set f (w, λ) in (1) as
f (W, λ) = −λ�W�1 and obtain the following formula:

min
S,W

m�
i=1

�(S − S(i)) � W�F − λ�W�1

s.t. S � � = Ŝ � �, 0 ≤ Spq ≤ 1 ∀p, q

0 ≤ Wpq ≤ 1 ∀p, q (4)

where λ is the age parameter and becomes increasingly larger
in the process of optimization.

C. Overall Objective Function

Equation (4) provides a self-paced framework to learn the
consensus matrix, and now, we need to transform it into
the final clustering result. Suppose that we want to partition
the instances into c clusters; the easiest way is to make S
contain just c connected components. Note that we obtain
the clustering result by finding the c connected compo-
nents without any uncertain discretization procedures, such as
k-means.

Let L be the Laplacian matrix of S, i.e., L = D −
((S + ST )/2), where D is a diagonal matrix whose pth diago-
nal element is Dpp = �

q((Spq + Sqp)/2). If S is nonnegative,
then the Laplacian matrix L has an important property as
follows.

Theorem 1 [56]: The multiplicity c of the eigenvalue 0 of
the Laplacian matrix L is equal to the number of connected
components in the consensus matrix S.

Theorem 1 indicates that if rank(L) = n −c, where rank(L)
denotes the rank of matrix L, then we already partition the
instances into c clusters based on S without any discretization
procedures, such as k-means. Motivated by this theorem,
we add the constraint rank(L) = n−c to the objective function

min
S,W

m�
i=1

�(S − S(i)) � W�F − λ�W�1

s.t. S � � = Ŝ � �, 0 ≤ Spq ≤ 1 ∀p, q,

rank(L) = n − c,
0 ≤ Wpq ≤ 1 ∀p, q. (5)

Last but not least, to obtain a clearer clustering structure,
we wish the consensus matrix S to be as sparse as possible so
that S can represent a clear graph structure. To achieve this,
we impose a sparse regularized term �S�0 on the objective
function and obtain the following formula:

min
S,W

m�
i=1

�(S − S(i)) � W�F − λ�W�1 + γ �S�0

s.t. S � � = Ŝ � �, 0 ≤ Spq ≤ 1 ∀p, q,

rank(L) = n − c,
0 ≤ Wpq ≤ 1 ∀p, q (6)

where γ is a balancing hyperparameter that can adjust the
sparsity of S. Note that we use �0-norm here instead of �1-
norm or any other convex or nonconvex approximation, which
can make S as sparse as possible.

Since (6) involves the Frobenius norm and rank function
that are difficult to optimize, we should relax (6) to simplify
the optimization.

First, we handle the Frobenius norm. By introducing auxil-
iary weight variables α, where 0 ≤ αi ≤ 1 and

�m
i=1 αi = 1,

we have the following theorem.
Theorem 2: minS,W

�m
i=1 �(S − S(i)) � W�F is equivalent

to minS,W,α
�m

i=1(1/αi )�(S − S(i)) � W�2
F .

Proof: Let S∗, W∗ and α∗ denote the optima of
minS,W,α

�m
i=1(1/αi )�(S−S(i))�W�2

F . To prove that S∗ and
W∗ are also the optima of minS,W

�m
i=1 �(S − S(i)) � W�F ,

we need to prove that given any S̃ and W̃, we have
m�

i=1

�(S∗ − S(i)) � W∗�F ≤
m�

i=1

�(S̃ − S(i)) � W̃�F .

Consider that

m�

i=1

�(S∗ − S(i)) � W∗�F

�2

≤



m�
i=1

1

α∗
i
�(S∗ − S(i)) � W∗�2

F

�

m�

i=1

α∗
i

�

=
m�

i=1

1

α∗
i
�(S∗ − S(i)) � W∗�2

F

≤
m�

i=1

1

α̃i
�(S̃ − S(i)) � W̃�2

F . (7)
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The first inequality is due to the Cauchy–Schwarz inequality,
the second equality is due to

�m
i=1 α∗

i = 1, and the third
inequality is because since S∗, W∗ and α∗ are the optima
of minS,W,α

�m
i=1(1/αi )�(S − S(i)) � W�2

F , given any α̃i ,
S̃ and W̃, we have

�m
i=1(1/α∗

i )�(S∗ − S(i)) � W∗�2
F ≤�m

i=1(1/α̃i )�(S̃ − S(i)) � W̃�2
F .

Note that α̃i can take any value that satisfies�
i=1 α̃i = 1 in (7). Specially, we set α̃i =

(�(S̃ − S(i)) � W̃�F )/(
�m

i=1 �(S̃ − S(i)) � W̃�F ). Then,
we have


m�
i=1

�(S∗ − S(i)) � W∗�F

�2

≤
m�

i=1

�m
i=1 �(S̃ − S(i)) � W̃�F

�(S̃ − S(i)) � W̃�F
�(S̃ − S(i)) � W̃�2

F

=



m�
i=1

�(S̃ − S(i)) � W̃�F

�2

(8)

which leads to that
m�

i=1

�(S∗ − S(i)) � W∗�F ≤
m�

i=1

�(S̃ − S(i)) � W̃�F .

This completes the proof.
According to Theorem 2, we relax (6) as

min
S,W,α

m�
i=1

1

αi
�(S − S(i)) � W�2

F − λ�W�1 + γ �S�0

s.t. S � � = Ŝ � �, 0 ≤ Spq ≤ 1 ∀p, q,

rank(L) = n − c,
0 ≤ Wpq ≤ 1 ∀p, q.

0 ≤ αi ≤ 1,

m�
i=1

αi = 1. (9)

Then, we handle the rank function. According to [56], since
we wish the rank of L is n−c, i.e., the c smallest eigenvalues of
L are 0s, we try to minimize

�c
i=1 σi (L), where σi (L) denotes

the i th smallest eigenvalues of L. According to Ky Fan’s theo-
rem [57], we have

�c
i=1 σi (L) = minY∈Rn×c,YT Y=I tr(YT LY).

Thus, by introducing orthogonal matrix Y ∈ R
n×c, we can

reformulate (9) as follows:

min
S,W,α,Y

m�
i=1

1

αi
�(S − S(i)) � W�2

F

− λ�W�1 + γ �S�0 + ρtr(YT LY)

s.t. S � � = Ŝ � �, 0 ≤ Spq ≤ 1 ∀p, q,

0 ≤ Wpq ≤ 1 ∀p, q

0 ≤ αi ≤ 1,

m�
i=1

αi = 1

YT Y = I (10)

where ρ is a large enough parameter to make sure that the
rank of L is n −c. Note that different from some conventional
ensemble methods that linearly combine all base connective
matrices, our S is more like a nonparametric consensus matrix,
which is more flexible and can effectively enlarge the region

from which an optimal consensus matrix can be chosen. The
similar results can also be found in some previous research,
such as in [58]–[60].

D. Optimization

Now, we introduce how to optimize (10). Since (10)
involves four groups of variables, we will use a block coordi-
nate descent schema to optimize it. More specifically, we will
optimize one group of variables while fixing the other variables
and repeat this procedure until it converges.

1) Optimize W: We remove the terms that are irrelative to
W and obtain

min
W

m�
i=1

1

αi
�A(i) � W�2

F − λ�W�1

s.t. 0 ≤ Wpq ≤ 1 ∀p, q (11)

where A(i) = S − S(i).
It is easy to verify that (11) can be decoupled into n × n

independent subproblems. Considering one of them

min
Wpq

Bpq W 2
pq − λWpq

s.t. 0 ≤ Wpq ≤ 1 (12)

where Bpq = �m
i=1(A2

pq/αi ).
Setting the partial derivative of (12) with respect to Wpq

to zero, we obtain that Wpq = (λ/2Bpq). Since Bpq ≥ 0,
Wpq ≥ 0. If (λ/2Bpq) > 1, i.e., Bpq W 2

pq − λWpq decreases
monotonically in the range [0, 1], so the optima is 1. To sum
up, we optimize Wpq as

Wpq = min

�
λ

2Bpq
, 1



. (13)

From (13), we see that λ corresponds to the "age" of the
model. When λ is small, the weight of the most samples is
small, and only easy samples with small losses (Bpq) influence
the model much. As λ grows, more samples with large losses
will gradually influence the model. This accords with the
motivation of self-paced learning.

2) Optimize S: When other variables are fixed,
we rewrite (10) as

min
S

m�
i=1

1

αi
�(S − S(i)) � W�2

F + γ �S�0

+ ρ

n�
p,q=1

�yp − yq�2
2Spq

s.t. S � � = Ŝ � �, 0 ≤ Spq ≤ 1 ∀p, q (14)

where yp and yq are the pth and qth row vectors in Y,
respectively.

Define a function g(x) where g(x) = 1 if x 	= 0 and
g(x) = 0 otherwise. Equation (14) can also be decoupled
into n × n independent subproblems. Since S � � = Ŝ � �,
we just need to consider Spq whose �pq = 0

min
Spq

m�
i=1

1

αi

�
Spq − S(i)

pq

�2
W 2

pq +γ g(Spq) + ρ�yp − yq�2
2 Spq

s.t. 0 ≤ Spq ≤ 1. (15)
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Equation (15) can be simplified further as

min
Spq

(Spq − Cpq)2 + τ g(Spq)

s.t. 0 ≤ Spq ≤ 1 (16)

where

Cpq =
�m

i=1
S(i)

pq
αi

− ρ�yp−yq�2
2

2W 2
pq�m

i=1
1
αi

and τ = (γ /(
�m

i=1(W 2
pq/αi ))).

Equation (16) has a closed-form solution

Spq =
⎧⎨
⎩

1, if Cpq ≥ 1
Cpq , if

√
τ ≤ Cpq < 1

0, Cpq <
√

τ .
(17)

3) Optimize Y: When optimizing Y, we have

min
Y

tr(YT LY)

s.t. YT Y = I. (18)

According to Ky Fan’s theorem [57], the solution of Y is
formed by the c eigenvectors of L corresponding to the c
smallest eigenvalues.

4) Optimize α: Let di denote �(S − S(i)) � W�2
F , and we

have

min
α

m�
i=1

di

αi

s.t. 0 ≤ αi ≤ 1,

m�
i=1

αi = 1. (19)

According to the Cauchy–Schwarz inequality, we have

m�
i=1

di

αi
=



m�

i=1

di

αi

�

m�

i=1

αi

�
≥



m�

i=1

�
di

�2

. (20)

The equality in (20) holds when αi ∝ √
di . Thus, the closed-

form solution of (19) is

αi =
√

di�m
j=1

�
d j

. (21)

E. Discussion

In this section, we first introduce how to initialize the
variables involved in our objective function and then discuss
how to choose the hyperparameter; at last, we discuss the
relations and differences of our method and robust clustering
ensemble methods.

We initialize S = �m
i=1(1/m)S(i) and construct L from S.

Then, we initialize Y by solving (18). We set ρ = 1 at first
and adjust it automatically by observing the rank of L. We
initialize αi = (1/m).

We initialize W by (13). However, in (13), we need to
decide λ first. In the initialization, we have set S as mean
of S(i) and αi = (1/m), and then, we take a closer look
at Bpq . Suppose that for the pair (xp, xq), there are k clustering
results agrees that they should belong to a cluster and the other

m−k results agrees that they belong to different clusters. Then,
we have

Bpq =
m�

i=1

(Spq − S(i)
pq)2

αi

=

�

k

m
− 1


2

k +
�

k

m


2

(m − k)

�
m. (22)

Let r denote r = (k/m), we get Bpq = ((r − 1)2r +
r2(1 − r))m2. Obviously, r indicates how many results agree
with each other. For example, r = 0.9 means that 90%
results agrees that the pair belongs to the same cluster.
Thus, the larger r is, the easier the pair is. In our method,
we initialize r = 0.9, and set λ

λ = 2Bpq = 2((r − 1)2r + r2(1 − r))m2 (23)

which means for xp and xq , if 90% clustering results agrees
with each other, then we set Wpq = 1, i.e., we use this pair
completely.

In the following learning, we gradually increase λ by
decreasing r from 0.9 to 0.5.

Then, we discuss how to choose the hyperparameter γ .
As we know, γ controls the sparsity of S. From (17), we find
that if Cpq <

√
τ , we have Spq = 0 and γ is proportional

to τ ; thus, γ plays a role as a threshold. More specifically,
Spq = 0 when

Cpq <
√

τ =
���� γ�m

i=1
W 2

pq
αi

≈
�

γ�m
i=1

1
αi

. (24)

The approximate equals sign is due to that, at last, almost all
pairs are involved in the learning; thus, all Wpq ≈ 1. Then,
according to the harmonic mean inequality, we have

Cpq <

�
γ�m

i=1
1
αi

≤
�

γ
�m

i=1 αi

m2 =
√

γ

m
. (25)

Denote θ = (
√

γ /m). θ can be viewed as a threshold,
i.e., Spq is nonzero when Cpq > θ . Therefore, we can easily
give a threshold θ and compute γ by γ = m2θ2 instead
of directly setting γ . For example, if we wish to keep Spq

nonzero when Spq > 0.5, we can easily set θ = 0.5 and
obtain γ = m2θ2 = 0.25 m2.

Last but not least, it is worthy to discuss another related
method here, called the robust clustering ensemble, which
focuses on the robustness of the clustering ensemble methods.
It captures the noises from data or base clustering results
and recovers clean results for the ensemble. For example,
Zhou et al. [39] learned a robust consensus clustering result
via minimizing the Kullback–Leibler divergence among
each base result; Tao et al. [40], [61] presented robust
clustering ensemble methods based on spectral clustering;
Huang et al. [62] applied probability trajectories to robust
clustering ensemble; and Liu et al. [63] proposed an ensemble
method on incomplete data. In these methods, they only
focus on the noises or outliers without distinguishing between
uncontaminated instances. In our method, the contaminated
instances can be viewed as the most difficult instances
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because they may contribute nothing to the learning. Besides,
the uncontaminated instances can also be handled in order
of difficulty. Therefore, our method handles instances
more finely. Moreover, the difficulty of instances is always
changing in the process of learning, i.e., most instances
become increasingly easier as time passes by. In our method,
we estimate the difficulty of instances (W) automatically in
the process of the ensemble. From (13), we observe that W
is proportional to λ, i.e., when time goes on (λ increases), W
will also increases until it reaches 1. Therefore, this property
can be well characterized by our method.

F. Whole Algorithm

Algorithm 1 summarizes the whole process of the SPCE
method. Note that in the inner iteration (Lines 6–17), the algo-
rithm optimizes S, Y, and α. Since the solution of each step
is the global optima of the corresponding subproblem, which
makes the objective function decrease monotonically and the
objective function has a lower bound, the iteration will always
converge.

Algorithm 1 SPCE

Input: m connective matrices S(1), . . . , S(m), number c of
clusters, threshold θ .

Output: Final clusters.
1: Construct Ŝ by Eq.(2) and construct � from Ŝ.
2: Initialize the parameters as introduced in Section III-E.
3: for r = 0.9, 0.8, · · · , 0.5 do
4: Compute λ by Eq.(23).
5: Compute W by Eq.(13).
6: while not converge do
7: Compute S by Eq.(17).
8: Compute Y by solving Eq.(18).
9: Compute α by Eq.(21).

10: if The rank of L is larger than n − c then
11: ρ = 2ρ.
12: else if The rank of L is smaller than n − c then
13: ρ = ρ/2.
14: else
15: Break.
16: end if
17: end while
18: end for
19: Obtain the final clusters from the c connective component

in S.

G. Time and Space Complexity

Since we need to save and handle m connective matrices
S(1), . . . , S(m), the space complexity is O(mn2).

When computing W, we need to compute A(i) (i =
1, . . . , m); thus, the time complexity is O(mn2). Computing
S costs O(n2c + n2m) since we need to compute C first.
Computing Y involves an eigenvector decomposition that costs
O(n2c) time. When computing α, we need to compute d
in O(n2m) time. Therefore, the whole time complexity is
O((n2m + n2c)t), where t is the number of iterations.

TABLE II

DESCRIPTION OF THE DATA SETS

The time and space complexity of our method is comparable
with the existing connective/coassociation matrix-based meth-
ods [39]–[41]. Despite this, we plan to reduce the computation
complexity of the proposed method in future work.

IV. EXPERIMENTS

In this section, we compare our SPCE with several state-of-
the-art clustering ensemble methods on benchmark data sets.

A. Data Sets

We use totally 12 data sets to evaluate the effectiveness
of our proposed SPCE, including AR [64], Coil20 [65],
GLIOMA [66], K1b [67], Lung [68], Medical [39], Tr41 [67],
Tdt2 [69], TOX [66], UMIST [70], WebACE [71], and
WarpAR [66]. Data sets from different areas serve as a good
test bed for a comprehensive evaluation. The basic information
of these data sets is summarized in Table II.

B. Compared Methods

We compare our SPCE with the following algorithms.

1) KM/SC: These are the average of all the base k-means
and spectral clustering results, respectively.

2) KM-best/SC-best: These are the best result of all the base
k-means and spectral clustering results, respectively.

3) KC: It represents the results of applying k-means to a
consensus similarity matrix, and it is often used as a
baseline in clustering ensemble methods, such as [24],
[39].

4) Cluster-Based Similarity Partitioning Algorithm (CSPA)
[3]: It signifies a relationship between objects in the
same cluster and can, thus, be used to establish a
measure of pairwise similarity.

5) Hypergraph Partitioning Algorithm (HGPA) [3]: It
approximates the maximum mutual information objec-
tive with a constrained minimum cut objective.

6) Metaclustering Algorithm (MCLA) [3]: It transforms
the integration into a cluster correspondence problem.
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TABLE III

ACC RESULTS ON ALL THE DATA SETS (k-MEANS BASED)

7) Nonnegative Matrix Factorization-Based Consensus
Clustering (NMFC) [24]: It uses NMF to aggregate
clustering results.

8) Bayesian Clustering Ensemble (BCE) [28]: It is a
Bayesian model for ensemble.

9) Robust Clustering Ensemble (RCE) [39]: It learns a
robust consensus clustering result via minimizing the
Kullback–Leibler divergence among each base result.

10) Multiview Ensemble Clustering (MEC) [41]: It is a
robust multiview clustering ensemble method using low-
rank and sparse decomposition to ensemble base clus-
tering and detect the noises.

11) Locally Weighted Evidence Accumulation (LWEA) [72]:
It is a hierarchical agglomerative clustering ensemble
method based on ensemble-driven cluster uncertainty
estimation and local weighting strategy.

12) Locally Weighted Graph Partitioning (LWGP) [72]: It is
a graph partition method based on the local weighting
strategy.

13) Robust Spectral Ensemble Clustering (RSEC) [61]: It is
a robust clustering ensemble method based on spectral
clustering.

14) Dense Representation Ensemble Clustering
(DREC) [73]: It learns a dense representation for
clustering ensemble.

15) SPCE-W: It is our method without W. To evaluate
the effectiveness of self-paced learning in our method,

we also run SPCE-W to see the performance of our
method without self-paced learning, i.e., in each itera-
tion, all weights in W are fixed to 1s.

16) SPCE-fixW: It is our method with fixed W, where Wij

is proportional to the frequency of the two instances
occurring in the clusters from the given base cluster-
ings. To further evaluate the effectiveness of self-paced
learning in our method, we also run SPCE-fixW with
fixed W, i.e., in each iteration, W is fixed as the initial
value as introduced in Section III-E instead of learning
automatically.

C. Experimental Setup

We conduct two groups of experiments that use k-means
and spectral clustering results as base clusterings, respec-
tively. In the k-means-based clustering ensemble, follow-
ing the similar experimental protocol in [28], [39], we run
k-means 200 times with different initializations on all
instances to obtain 200 base clustering results that are
divided evenly into ten subsets, with 20 base results in
each subset. Then, we apply all clustering ensemble methods
on each subset and report the average results on the ten
subsets. In spectral-based clustering ensemble, we use the
Gaussian kernel k(xi , x j ) = e−((�xi−x j�2

2)/2σ 2) to construct
the Laplacian matrix for spectral clustering. σ is the band-
width parameter, and in our experiments, we set σ = d ∗
{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} for ensemble, i.e., we
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TABLE IV

NMI RESULTS ON ALL THE DATA SETS (k-MEANS BASED)

Fig. 1. Illustration of clustering structure in the learned consensus matrices from different methods on the K1b data set. (a) Input coassociation matrix.
(b)–(d) Learned consensus matrices by robust methods. (f) S in our method. Note that the second cluster and the third cluster are separated more clearly
in our method and so are the fourth cluster and the fifth cluster. Thus, the consensus matrix of our method is cleaner than those robust methods. (a) Input
coassociation matrix Ŝ. (b) RCE. (c) MEC. (d) RSEC. (e) SPCE.

ensemble nine spectral clustering results, where d is the mean
distance between all pairs (xi , x j ). We also repeat it ten times
and report the average results. To measure the clustering

results, the widely used accuracy (ACC), NMI, and adjusted
rand index (ARI) are reported. To validate the statistic signif-
icance of results, we also calculate the p-value of t-test.
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TABLE V

ARI RESULTS ON ALL THE DATA SETS (k-MEANS BASED)

TABLE VI

ACC RESULTS ON ALL THE DATA SETS (SPECTRAL CLUSTERING BASED)

The number of clusters is set to the true number of classes
for all data sets and algorithms. In our method, we set the
parameter γ as γ = m2θ2 (where m is the number of

base clustering results), as introduced in Section III-E, and
tune θ = {0, 0.1, . . . , 0.9} to control the sparsity. Note that
θ = 0 means we drop the regularized term �S�0. We tune
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TABLE VII

NMI RESULTS ON ALL THE DATA SETS (SPECTRAL CLUSTERING BASED)

the parameters in compared methods, as suggested in their
articles.

All experiments are conducted using MATLAB on a PC
with Windows 10, 4.2-GHz CPU and 32-GB memory.

D. Experimental Results

The average ACC, NMI, and ARI results and the stan-
dard deviation on the k-means-based ensemble are shown
in Tables III–V, respectively. The results on spectral-based
ensemble are shown in Tables VI–VIII, respectively. Bold fond
indicates that the difference is statistically significant, i.e., the
p-value of t-test is smaller than 0.05. Note that since we aim
to compare with other clustering ensemble methods, we do
not calculate the p-value of KM, KM-best, SC, and SC-best.
Due to their high space complexity, RCE and MEC yield no
results on the largest data set Tdt2 because they run out of
memory.

The results reveal some interesting points.
1) Many clustering ensemble methods perform better than

KM and SC, which indicates the benefit of ensemble
methods. Many methods cannot outperform the KM-best
and SC-best at most times. It may be because many base
results are not so good, and these bad clustering results
may deteriorate the performance of ensemble learning.
However, the performance of our SPCE is usually
close to or even better than the result of KM-best and

Fig. 2. Convergence curves of our method. (a) AR. (b) Coil20. (c) GLIOMA.
(d) Lung.

SC-best. In our formulation, we minimize the Frobenius
norm instead of the square of the Frobenius norm of the
difference between S and S(i). It is equivalent to add
the weight on each base clustering, which can reduce
the side effect of the bad base clusterings. Moreover,
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TABLE VIII

ARI RESULTS ON ALL THE DATA SETS (SPECTRAL CLUSTERING BASED)

the self-paced learning framework can also reduce the
effect of hard (or bad) instances. Note that, SPCE
does not need to perform an exhaustive search on the
predefined pool of base clusterings. Such results well
demonstrate the superiority of our method.

2) On most data sets, our method outperforms other
compared methods significantly. Compared with the
robust methods RCE, MEC, and RSEC, our method can
also usually obtain a better performance. This may be
because our method can learn a clearer cluster structure,
which is illustrated in Fig. 1. In Fig. 1, we show the
input coassociation matrix and the consensus matrices
learned from these robust ensemble methods on the
K1b data set. We can see that the consensus matrix
learned by our SPCE method is cleaner than other
robust methods (the second cluster and the third cluster
are separated more clearly in our method and so are the
fourth cluster and the fifth cluster), which demonstrates
the effectiveness of our method.

3) SPCE-fixW performs better than SPCE-W, which means
imposing the weights on instances can indeed improve
the performance. Compared with SPCE-fixW, SPCE
outperforms it on most data sets. It demonstrates the
effectiveness of self-paced learning in our framework.
Learning from easy instances and involving difficult
instances gradually can further improve the performance
of the clustering ensemble.

Table IX shows the running time (with 20 base clusterings
for ensemble) of the clustering ensemble methods on all data
sets. The underlined data means that the corresponding method
is slower than ours on that data set. From Table IX, we can find
that compared with other connective matrix-based methods,
i.e., RCE, MEC, and RSEC, our method is significantly faster
than them on most data sets. Note that on the largest data set,
Tdt2, RCE, and MEC run out of memory, while our method
can still work.

Fig. 2 shows the algorithm convergence curve on AR,
Coil20, GLIOMA, and Lung data sets, and the results on other
data sets are similar. The example results in Fig. 2 demonstrate
that our method converges within a small number of iterations.

E. Parameter Study

Our method contains only one hyperparameter (0 ≤ θ < 1),
which is needed to set manually. As discussed in Section III-E,
θ plays a role as a threshold that controls the sparsity of
the consensus matrix S, i.e., the larger θ is, the sparser S
is. We tune θ from {0, 0.1, . . . , 0.9} and show the results
in Fig. 3. The results of other data sets are similar. Note that
θ = 0 means that we drop the term �S�0 in our formulation,
and the results show that our method does not perform well
without this term (θ = 0), which demonstrates its necessity.
From Fig. 3, we can select θ from [0.2, 0.6], which can often
obtain a relatively good performance.
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TABLE IX

RUNNING TIME ON ALL THE DATA SETS WITH 20 BASE CLUSTERINGS (s)

Fig. 3. ACC and NMI with respect to θ . (a) ACC with respect to θ on
AR. (b) NMI with respect to θ on AR. (c) ACC with respect to θ on Coil20.
(d) NMI with respect to θ on Coil20. (e) ACC with respect to θ on Lung.
(f) NMI with respect to θ on Lung.

V. CONCLUSION

In this article, we proposed a novel SPCE method. Different
from the conventional clustering ensemble methods, which
use all instances in ensemble learning, we gradually involved
instances in learning from easy to difficult ones. In the self-
paced learning framework, we proposed an effective algorithm
to jointly learn the difficulty of instances and the consensus
clustering result. We conducted extensive experiments on
benchmark data sets, and the experimental results demon-
strated that our method not only outperformed the state-of-the-
art clustering ensemble methods but also had a closed or even
better performance compared with the best base clustering
result.

In the future, we will consider the scalable issue and try to
reduce the time and space complexity of our method.
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