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ABSTRACT
Clustering is a representative unsupervised method widely applied

in multi-modal and multi-view scenarios. Multiple kernel clustering

(MKC) aims to group data by integrating complementary informa-

tion from base kernels. As a representative, late fusion MKC first

decomposes the kernels into orthogonal partition matrices, then

learns a consensus one from them, achieving promising perfor-

mance recently. However, these methods fail to consider the noise

inside the partition matrix, preventing further improvement of

clustering performance. We discover that the noise can be disas-

sembled into separable dual parts, i.e. N-noise and C-noise (Null

space noise and Column space noise). In this paper, we rigorously

define dual noise and propose a novel parameter-free MKC algo-

rithm by minimizing them. To solve the resultant optimization

problem, we design an efficient two-step iterative strategy. To our

best knowledge, it is the first time to investigate dual noise within

the partition in the kernel space. We observe that dual noise will

pollute the block diagonal structures and incur the degeneration of

clustering performance, and C-noise exhibits stronger destruction

than N-noise. Owing to our efficient mechanism to minimize dual

noise, the proposed algorithm surpasses the recent methods by

large margins.

CCS CONCEPTS
• Computing methodologies → Cluster analysis; • Theory of
computation → Unsupervised learning and clustering.
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1 INTRODUCTION
Clustering is a representative unsupervised learning method widely

applied in data mining, community detection and many other ma-

chine learning scenarios [1–7]. Multi-view or multi-modal cluster-

ing aims to optimally fuse diverse and complementary information,

which has been a hotpot in current research [8–16]. As Figure 1

shows, how to effectively and efficiently integrate multimedia or

multiple features, e.g. image, video, and text, is still an open ques-

tion [17–24]. Multiple kernel clustering (MKC) [25–30] is a popular

technique to solve this. Considering the insufficiency to tackle non-

linearly separable data in sample space, MKCmaps the sample space

to a Reproducing Kernel Hilbert Space (RKHS), where the data can

be linearly separable [31]. Currently, there are two mainstream

methods, including kernel fusion and late fusion strategies.

Kernel fusion methods focus on learning a consensus kernel

from base kernels directly, afterwards compute the final partition

(cluster soft-assignment) [32]. A typical paradigm is multiple kernel

𝑘-means (MKKM) [33]. Meanwhile, plenty of variants are derived

[34–38]. For the purpose of directly serving for clustering tasks,

late fusion methods aim to obtain a consensus partition from base

partitions. This strategy is proposed by [39] and inspires a large

number of researches [40–44]. Our proposed algorithm belongs to

the second category.

Although the late fusionmethods exhibit promising performance,

most existing researches [39, 42–44] encounter three issues: (i)

These models adopt a coarse manner that directly fuses the pre-

computed kernel partitions without updating during the optimiza-

tion. Consequently, the quality of consensus partition is greatly

https://doi.org/10.1145/3503161.3548334
https://doi.org/10.1145/3503161.3548334
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Figure 1: Multi-view learning aims to fuse data across multi-
media or multiple features, e.g. features can be extract from
image, video, text and other multi-modal representations.
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(a) Original kernel (ACC: 41.77%)
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(b) Remove N-noise (ACC: 68.29%)
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(c) Remove C-noise (ACC: 97.62%)
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(d) Remove dual noise (ACC: 100%)

Figure 2: Visualization of noise destruction on Plant dataset.

limited by the initial partitions and leads to limited clustering per-

formance. The work in [41] attempts to tackle this issue by updat-

ing partitions in a hierarchical manner. However, along with the

improvement of clustering performance, it introduces a great com-

plexity in the optimization. (ii) Moreover, most late fusion based

methods are modeled with one or more hyper-parameters, which is

intractable in real-world scenarios due to the missing of supervisory

signals. (iii) Most critically, existing researches fail to consider the

noise within partition matrices. In clustering settings, researchers

always prefer a clear block diagonal structure. However, as Figure

2 (a) shows, the noise will inevitably corrupt the block diagonal

structure, leading to the degeneration of clustering performance.

Overall, an efficient, parameter-free model which can effectively

minimize the impact of noise is an urgent need in multiple kernel

clustering applications.

To fill these gaps, this paper develops a novel MKC algorithm

with a dual noise minimization mechanism (MKC-DNM). Specif-

ically, we discover that the noise, according to its mathematical

property, can be disassembled into two separate dual parts, i.e. Null

space noise (N-noise) and Column space noise (C-noise). As Figure 2

shows, we visualize the effect of dual noise on Plant dataset. Specif-

ically, we test the kernel quality (the accuracy of kernel 𝑘-means)

in four comparative settings, i.e. without modification, removing

N-noise, removing C-noise and removing both of them. It can be ob-

served that the accuracy increases from 41.77% to 68.29% and 97.62%

with removing N-noise and C-noise, respectively. The phenomenon

illustrates (i) both of the dual noise will pollute the kernel, leading

to the degeneration of clustering performance; (ii) C-noise exhibits

stronger destruction than N-noise on the block diagonal structure.

Therefore, a natural motivation of this work is to minimize dual

noise. This paper firstly provides rigorous mathematical defini-

tions of dual noise, then carefully explores their properties, and

further proposes a unified and elegant paradigm to minimize them

simultaneously. The contributions of this work are summarized as

follows:

1) In MKC scenarios, for the first time, we mathematically disas-

semble the noise of kernel partition into N-noise and C-noise,

distinguishing our work from existing researches. Furthermore,

we find that C-noise exhibits stronger destruction than N-noise

on the block diagonal structures, which directly leads to the

degeneration of clustering performance.

2) We propose a novel model to minimize dual noise in late fu-

sion framework. Most importantly, our model is parameter-free,

making it practical, especially in unsupervised scenarios.

3) We propose an efficient two-step alternative optimization strat-

egy to solve our model with linear computation complexity,

and achieve state-of-art clustering performance on benchmark

datasets.

2 RELATEDWORK
2.1 Multiple Kernel 𝑘-means
Considering a data matrix X ∈ R𝑑×𝑛 drawn from 𝑘 clusters where

𝑑 and 𝑛 refer to the feature dimension and sample number respec-

tively, 𝑘-means aims to minimize the inter-cluster loss [45–48],

min

Y

𝑛∑︁
𝑖=1

𝑘∑︁
𝑟=1

∥x𝑖 − c𝑟 ∥22Y𝑖𝑟 , s.t.

𝑘∑︁
𝑟=1

Y𝑖𝑟 = 1, (1)

where Y ∈ {0, 1}𝑛×𝑘 is the indicator matrix, 𝑛𝑟 =
∑𝑛
𝑖=1 Y𝑖𝑟 is the

sample number of the 𝑟 -th cluster whose centroid is c𝑟 .
With kernel trick [31], i.e. K𝑖 𝑗 = 𝜅

(
x𝑖 , x𝑗

)
= 𝜙 (x𝑖 )⊤ 𝜙

(
x𝑗

)
, the

sample space R𝑑 can be mapped into an RKHS H [49], in which

𝜅 (·, ·) is the kernel function, 𝜙 (·) is nonlinear feature mapping.

Kernel 𝑘-means (KKM) is transformed to

min

H
Tr

( (
I − HH⊤)

K
)
, s.t. H⊤H = I𝑘 , H ∈ R𝑛×𝑘 , (2)

where the partition matrix H is computed by eigenvalue decom-

position. The final cluster labels can be obtained by performing

𝑘-means on H [30].

In multiple kernel scenarios, the consensus kernel is commonly

assumed as a combination of𝑚 base kernels. As a representative,

the objective of MKKM [33] is

min

H,𝜷
Tr

( (
I − HH⊤)

K𝜷

)
,

s.t. H⊤H = I𝑘 , H ∈ R𝑛×𝑘 , 𝜷⊤1 = 1, 𝛽𝑝 ≥ 0, ∀𝑝,
(3)

where K𝜷 =
∑𝑚
𝑝=1 𝛽

2

𝑝K𝑝 is the consensus kernel and 𝛽𝑝 is the

weight of the 𝑝-th kernel. In the optimization, H and 𝜷 can be

solved alternatively.
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2.2 Late Fusion Multiple Kernel Clustering
Instead of fusing consensus kernel from base kernels K𝑝 , late fusion

MKC focuses on fusing multiple partitions H𝑝 to directly serve

for clustering [39]. The paradigm of late fusion MKC (LFMKC) is

presented as follows:

max

H∗,H𝜷 ,𝜷
Tr

(
H∗⊤H𝜷 + 𝜆H∗⊤M

)
,

s.t. H∗⊤H∗ = I𝑘 , H
∗ ∈ R𝑛×𝑘 ,

W⊤
𝑝W𝑝 = I𝑘 , W𝑝 ∈ R𝑘×𝑘 ,

∥𝜷 ∥2
2
= 1, 𝛽𝑝 ≥ 0,∀𝑝,

(4)

where H∗
is the consensus partition, H𝜷 =

∑𝑚
𝑝=1 𝛽𝑝H𝑝W𝑝 is the

fused partition with each base one aligned by permutation ma-

trix W𝑝 , M is the partition of average kernel, and 𝜆 is a trade-off

parameter.

The above paradigm aims to maximally align the consensus

partition and base partitions. Although achieving promising per-

formance, the consensus partition, as pointed in [41], is directly

learned from base partitions that are fixed during the optimization,

limiting its performance. Moreover, the current method neglects

the noise in kernel partitions.

2.3 Hierarchical Multiple Kernel Clustering
To update the kernel partition during optimization, [41] proposes

to gradually category clusters from K𝑝 ∈ R𝑛×𝑛 to intermediate

H ∈ R𝑛×𝑐 and finally to H∗ ∈ R𝑛×𝑘 . The idea is formulated as

max

H∗,H𝑝 ,𝝎,𝜷

𝑠∑︁
𝑡=1

𝑚∑︁
𝑝=1

𝜔
(𝑡 )
𝑝 Tr

(
K(𝑡 )
𝑝 K(𝑡−1)

𝑝

)
+

𝑚∑︁
𝑝=1

𝛽𝑝 Tr

(
K(𝑠)
𝑝 K∗

)
,

s.t. H∗⊤H∗ = I𝑘 , H
(𝑡 )⊤
𝑝 H(𝑡 )

𝑝 = I𝑐𝑡 , H
∗ ∈ R𝑛×𝑘 ,

H(𝑡 )
𝑝 ∈ R𝑛×𝑐𝑡 , 𝑛 > 𝑐1 > · · · > 𝑐𝑠 > 𝑘,

∥𝝎 (𝑡 ) ∥2
2
= 1, 𝜔

(𝑡 )
𝑝 ≥ 0, ∥𝜷 ∥2

2
= 1, 𝛽𝑝 ≥ 0,

(5)

where K(𝑡 )
𝑝 = H(𝑡 )

𝑝 H(𝑡 )⊤
𝑝 for 𝑡 ≥ 1, K(0)

𝑝 = K𝑝 , K∗ = H∗H∗⊤
,

and H(𝑡 )
𝑝 is the intermediary partitions with decreasing sizes. The

complex formulation conveys a straightforward insight that the

data representation should be extracted step by step. In this way,

the data information beneficial to clustering could be maximally

preserved.

Obviously, each term of Eq. (5) is a kernel 𝑘-means objective in

essence. Also, this is an empirical and coarse manner. Neverthe-

less, the sizes of intermediary partitions are still hyper-parameters

that require carefully tuning or grid-searching in practice. Most

importantly, it fails to tackle the noise inside the partition matrices.

3 METHODOLOGY
3.1 Motivation
In multiple kernel scenarios, a 𝑑𝑝 -dimensional feature matrix U𝑝 ∈
R𝑛×𝑑𝑝 is commonly served as the data representation of the 𝑝-th

kernel computed by singular value decomposition (SVD), which

satisfies U⊤
𝑝 U𝑝 = I𝑑𝑝 . It’s worth noting that the dimension 𝑑𝑝 of

feature matrices may vary at a large range since multiple kernels

are naturally discrepant and complementary. Consequently, it is

necessary to fuse a consensus optimal partition H∗ ∈ R𝑛×𝑘 across

multiple U𝑝 for clustering purpose, i.e.

𝑓

(
{U𝑝 }𝑚𝑝=1

)
= H∗, s.t. H∗⊤H∗ = I𝑘 , (6)

where 𝑓 is the function to fuse𝑚 feature matrices.

3.1.1 Definitions of dual noise. Directly integrating feature matri-

cesU𝑝 across𝑚 kernels is a challenging issue since their dimensions

𝑑𝑝 varies greatly. Fortunately, both U𝑝U⊤
𝑝 and H∗H∗⊤

share the

target clustering structure of K𝑝 but with a discrepancy E𝑝 , i.e.

U𝑝U⊤
𝑝 = H∗H∗⊤ + E𝑝 , ∀𝑝 ∈ Δ𝑚, (7)

where Δ𝑚 = {1, 2, · · · ,𝑚}, and E𝑝 ∈ R𝑛×𝑛 can be regarded as the

noise matrix. Mathematically, E𝑝 can be further separated into Null

space noise (N-noise, EN𝑝 ) and Column space noise (C-noise, EN𝑝 ),
i.e.

E𝑝 = EN𝑝 + EC𝑝 , ∀𝑝 ∈ Δ𝑚 . (8)

We emphasize that the above definitions are derived based on

which subspace their eigenvectors belong to, i.e. 𝑣

(
EN𝑝

)
∈ 𝑁

(
H∗⊤)

,

𝑣

(
EC𝑝

)
∈ 𝐶 (H∗), where 𝑣 (A) denotes the eigenvectors with cor-

responding non-zero eigenvalues of matrix A, 𝑁 (B) and 𝐶 (B)
denote the Null space and the Column space of matrix B, respec-
tively. Mathematically, as pointed in [50], 𝑣

(
EN𝑝

)
, 𝑣

(
EC𝑝

)
can be

computed by

𝑣

(
EN𝑝

)
∈ 𝑁

(
H∗⊤

)
=

{
x | H∗⊤x = 0

}
, ∀𝑝 ∈ Δ𝑚, (9)

𝑣

(
EC𝑝

)
∈ 𝐶

(
H∗) = {

y | ∃ x, s.t. y = H∗x
}
, ∀𝑝 ∈ Δ𝑚 . (10)

According to [50], the null space of H∗⊤
is the orthogonal com-

plement of the column space of H∗
, which demonstrates that given

E𝑝 , dual noise matrices EN𝑝 and EC𝑝 exist and should be unique. Fig-

ure 2 gives a visualization of destruction caused by dual noise in

kernel space.

3.1.2 Properties of dual noise. Before introducing the proposed

noise minimization mechanism, we first give several vital mathe-

matical properties of EN𝑝 and EC𝑝 in Lemma 3.1-3.3.

Lemma 3.1. Tr

(
EN𝑝H

∗H∗⊤
)
= 0, ∀𝑝 ∈ Δ𝑚 .

Lemma 3.2. Tr

(
EC𝑝H

∗H∗⊤
)
= Tr

(
EC𝑝

)
, ∀𝑝 ∈ Δ𝑚 .

Lemma 3.3. EN𝑝 is positive semi-definite (PSD) and EC𝑝 is negative
semi-definite (NSD).

Lemma 3.1-3.2 illustrate the relationship between the dual noise

and the optimal partition H∗
, and Lemma 3.3 shows that we can

remove dual noise by minimizing the absolute value of their trace.

Due to space limit, the detailed proofs of Lemma 3.1-3.3 are provided

in the appendix.
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Figure 3: The framework of the proposedMKC-DNMmodel. The core idea is to adaptively optimize base partitions byminimizing
dual noise during the iteration. Specifically, the MKC-DNM model firstly performs kernel 𝑘-means and generate H𝑝H⊤

𝑝 to
recover the clustering structures of base kernels K𝑝 , and then gradually remove N-noise (EN𝑝 ) and C-noise (EC𝑝 ) of H𝑝 , preserving
the denoised feature matrices U𝑝 . Consequently, a consensus partition H∗ with precise block diagonal structures is obtained.

3.1.3 Minimizing C-noise. Recall our motivation that we aim to

minimize C-noise, ideally EC𝑝 = 0, according to Lemma 3.2 and

Lemma 3.3, it is equivalent to

Tr

(
EC𝑝H

∗H∗⊤
)
= 0, ∀𝑝 ∈ Δ𝑚 . (11)

However, directly solving Eq. (11) is difficult due to the unknown

H∗
. Fortunately, Theorem 3.1 provides a necessary condition to

satisfy EC𝑝 = 0.

Theorem 3.1. ∥U⊤
𝑝 U𝑞 ∥2

F
≥ 𝑘 is necessary for EC𝑝 = 0, ∀𝑝 ∈ Δ𝑚 .

Proof. Given EC𝑝 = 0 and H∗⊤H∗ = I𝑘 , according to Eq. (6), we

have

∥U⊤
𝑝 U𝑞 ∥2

F
= Tr

(
U𝑝U⊤

𝑝 U𝑞U⊤
𝑞

)
=Tr

((
H∗H∗⊤ + EN𝑝

) (
H∗H∗⊤ + EN𝑞

))
=Tr

(
H∗H∗⊤H∗H∗⊤ + EN𝑝H

∗H∗⊤ + H∗H∗⊤EN𝑞 + EN𝑝 E
N

𝑞

)
.

(12)

According to Lemma (3.1), Eq. (12) is equivalent to

Tr

(
H∗H∗⊤H∗H∗⊤ + EN𝑝 E

N

𝑞

)
= 𝑘 + Tr

(
EN𝑝 E

N

𝑞

)
. (13)

Since EN𝑝 satisfies PSD according to Lemma 3.3, we haveTr

(
EN𝑝 E

N

𝑞

)
≥

0, i.e. Eq. (13) ≥ 𝑘 . Consequently, ∥U⊤
𝑝 U𝑞 ∥2

F
≥ 𝑘 .

This completes the proof. □

3.1.4 Minimizing N-noise. Similarly, the optimal solution of mini-

mizing N-noise is EN𝑝 = 0. According to Lemma 3.3, it is equivalent

to Tr(EN𝑝 ) = 0. Therefore, the original goal to minimize EN𝑝 can

be transformed to minimize Tr(EN𝑝 ). For MKC scenario, we should

minimize

∑𝑚
𝑝=1 Tr(EN𝑝 ). Furthermore, Theorem 3.2 illustrates that

minimizing

∑𝑚
𝑝=1 Tr(EN𝑝 ) is equivalent to minimizing d⊤1.

Theorem3.2. Fixing {EC𝑝 }𝑚𝑝=1, minimizing
∑𝑚
𝑝=1 Tr(EN𝑝 ) is equiv-

alent to minimizing d⊤1.

Proof. Given U𝑝U⊤
𝑝 = I𝑑𝑝 and H∗⊤H∗ = I𝑘 for all 𝑝 ∈ Δ𝑚 ,

according to Eq. (7), we have

𝑚∑︁
𝑝=1

Tr

(
EN𝑝

)
=

𝑚∑︁
𝑝=1

(
Tr

(
U𝑝U⊤

𝑝

)
− Tr

(
H∗H∗⊤ + E𝐶𝑝

))
=

𝑚∑︁
𝑝=1

𝑑𝑝 −
𝑚∑︁
𝑝=1

(
𝑘 + Tr

(
E𝐶𝑝

))
⇐⇒

𝑚∑︁
𝑝=1

𝑑𝑝 = d⊤1,

(14)

where d = [𝑑1, 𝑑2, · · · , 𝑑𝑚]⊤ collects the dimension of feature matri-

cesU𝑝 . Note that the above deduction is valid since
∑𝑚
𝑝=1

(
𝑘 + Tr

(
E𝐶𝑝

))
is a constant and can be eliminated for optimization.

This completes the proof. □

3.2 Proposed Formulation
According to the aforementioned analysis on minimizing dual noise,

we integrate Theorem 3.1 and Theorem 3.2 into a unified and

parameter-free framework, i,e.

min

d
d⊤1, s.t. ∥U⊤

𝑝 U𝑞 ∥2
F
≥ 𝑘, ∀𝑝, 𝑞 ∈ Δ𝑚 ; d ∈ Z𝑚+ , (15)

where d = [𝑑1, 𝑑2, · · · , 𝑑𝑚]⊤ collects the dimensions of feature

matrices U𝑝 , and Z
𝑚
+ denotes the set of all positive integers.

From the above compact model, we have the following obser-

vations: (i) Our motivation aims to minimize dual noise, and we

derive a straightforward but elegant framework. (ii) The objective

is derived from minimizing N-noise, and the constraint is origi-

nated from minimizing C-noise, which directly serves for noise

minimization purpose. (iii) Our model is parameter-free, satisfying

the essence of unsupervised clustering.
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Algorithm 1 Multiple kernel clustering with dual noise minimiza-

tion

Input: {H𝑝 }𝑚𝑝=1 and 𝑘 .
Output: The optimal {U𝑝 }𝑚𝑝=1 and d.

1: Initialize a feasible d, ˆd = d, flag = 1;

2: while flag do
3: update d by optimizing Eq. (22);

4: update
ˆd by optimizing Eq. (23);

5: if d = ˆd then
6: flag = 0.

7: end if
8: end while

Although our algorithm is compact and elegant, it is difficult

to solve Eq. (15) directly. Inspired by the widely employed Big M

method [51] in operation research, we introduce auxiliary vari-

ables {𝑎𝑝 }𝑚𝑝=1 to transform the original Eq. (15) into the following

formulation:

min

d,ˆd

1

2

(d + ˆd)⊤1 + M

2

∥d − ˆd∥2
2
,

s.t. ∥U⊤
𝑝 Û𝑞 ∥2

F
≥ 𝑘, ∀𝑝, 𝑞 ∈ Δ𝑚 ; d, ˆd ∈ Z𝑚+ ,

(16)

where
ˆd = d+a and Û𝑞 ∈ R𝑛× ˆ𝑑𝑝

. As pointed in [51], the solution of

Eq. (15) is equivalent to Eq. (16) for a large enough M, i.e. ∥d − ˆd∥2
2

will be zero. Theorem 3.3 gives a brief proof.

Theorem 3.3. The local optimal solution of Eq. (16) is equivalent
to that of Eq. (15) for a large enough constantM.

Proof. We first define two functions:

𝑔(d) = d⊤1, 𝐺M (d, ˆd) = 1

2

(d + ˆd)⊤1 + M

2

∥d − ˆd∥2
2
, (17)

Supposing

(
d∗, ˆd∗

)
is a local optimal solution of Eq. (16), which can

be formulated as

∃ 𝑁

(
d∗, ˆd∗

)
, ∀

(
d, ˆd

)
∈ 𝑁

(
d∗, ˆd∗

)
, 𝐺M

(
d∗, ˆd∗

)
≤ 𝐺M

(
d, ˆd

)
,

(18)

where 𝑁 (•) denotes the neighborhood of •.
A large enoughM means ∥d∗ − ˆd∗∥2

2
= 0, i.e. d∗ = ˆd∗. According

to Eq. (18), we have

∃𝑁
(
d∗

)
, ∀d ∈ 𝑁

(
d∗

)
, 𝐺M

(
d∗, d∗

)
≤ 𝐺M (d, d) . (19)

Furthermore, we have

𝑔
(
d∗

)
= 𝐺M

(
d∗, d∗

)
≤ 𝐺M (d, d) = 𝑔 (d) . (20)

This completes the proof. □

3.3 Optimization
Directly optimizing Eq. (16) is difficult since it is not convex. This

section provides an alternative strategywhere each sub-optimization

is convex.

3.3.1 Sub-optimization of updating 𝒅. With fixed
ˆd, Eq. (16) is

formulated into

min

{𝑑𝑝 }𝑚𝑝=1

𝑚∑︁
𝑝=1

1

2

(𝑑𝑝 + ˆ𝑑𝑝 ) +
M

2

(𝑑𝑝 − ˆ𝑑𝑝 )2,

s.t. ∥U⊤
𝑝 Û𝑞 ∥2

F
≥ 𝑘, ∀𝑞 ∈ Δ𝑚 ; 𝑑𝑝 ∈ Z+ .

(21)

As pointed in [52], the object function of Eq. (21) is L
♮
-convex

on the effective domain, and the effective domain is restricted to

an L
♮
-convex set. Consequently, Eq. (21) is an L

♮
-convex problem

about d.
Since each 𝑑𝑝 is independent, Eq. (21) can be transformed into

𝑚 independent sub-problems and each can be separately solved by

min

𝑑𝑝

1

2

(𝑑𝑝 + ˆ𝑑𝑝 ) +
M

2

(𝑑𝑝 − ˆ𝑑𝑝 )2,

s.t. ∥U⊤
𝑝 Û𝑞 ∥2

F
≥ 𝑘, ∀𝑞 ∈ Δ𝑚, 𝑑𝑝 ∈ Z+ .

(22)

According to [53], the above one-dimensional L
♮
-convex opti-

mization problem can be solved by discrete binary search efficiently.

3.3.2 Sub-optimization of updating ˆ𝒅. Similarly, we can obtain
ˆd

by solving the following problem separately for each 𝑝:

min

ˆ𝑑𝑝

1

2

( ˆ𝑑𝑝 + 𝑑𝑝 ) +
M

2

( ˆ𝑑𝑝 − 𝑑𝑝 )2,

s.t. ∥Û⊤
𝑝 U𝑞 ∥2

F
≥ 𝑘, ∀𝑞 ∈ Δ𝑚, ˆ𝑑𝑝 ∈ Z+ .

(23)

The optimization procedures in solving Eq. (16) is outlined in

Algorithm 1. Note that the optimal U𝑝U⊤
𝑝 learned by Algorithm 1

is PSD for all 𝑝 ∈ Δ𝑚 , which can be regarded as kernel matrix. As

a result, we can employ average kernel 𝑘-means on {U𝑝U⊤
𝑝 }𝑚𝑝=1 to

recover the optimal H∗
, which can be solved efficiently by perform-

ing SVD on [U1,U2, · · · ,U𝑚] and extract the rank-𝑘 columns of

the left singular matrix [54].

3.4 Complexity and Convergence
3.4.1 Computational Complexity. The computation complexity

of our algorithm involves two part, i.e. optimization and post-

processing. In optimization, it involves two variables. Updating

d involves𝑚 independent sub-problems to compute the optimal

d, and each one conducts discrete binary search. Therefore, the

computational complexity is O
(
𝑛𝑚2𝑘2 log𝑘

)
. Similarly, updating

ˆd
also needs O

(
𝑛𝑚2𝑘2 log𝑘

)
for solving Eq. (23). Therefore, the opti-

mization process costs O
(
𝑛𝑚2𝑘2 log𝑘

)
. Note that it achieves linear

complexity with respect to sample number. For post-processing,

we perform SVD on [U1,U2, · · · ,U𝑚] to obtain the optimal parti-

tion matrix H∗
and get the final clustering label by 𝑘-means. The

complexity is O
(
𝑛𝑚2𝑘2

)
, which is also linear complexity with re-

spect to 𝑛. Consequently, we develop a linear-complexity algorithm

withO
(
𝑛𝑚2𝑘2 log𝑘

)
, sharing the similar computational complexity

with late fusion methods [39] and [42]. Note that linear complexity

means it is suitable for large-scale tasks. Moreover, our algorithm

is free of hyper-parameter, which is more practical compared with

the ones requiring parameter-tuning by grid search.

3.4.2 Convergence. Our algorithm is non-convex to directly com-

pute all the variables, and we adopt an alternative optimization

manner to solve the resultant model. According to Theorem 1 in
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Table 1: Information of datasets

Dataset Type Samples Views Clusters

BBCSport Text 544 2 5

Plant Image 940 69 4

SensIT Vehicle Graph 1500 2 3

CCV Video 6773 3 20

Flower102 Image 8189 4 102

Reuters Text 18758 5 6

[55], alternatively optimizing each sub-optimization is convex with

other variables fixed. The objective of Algorithm 1 is monotonically

decreased and lower bounded by zero. Consequently, our proposed

algorithm can be guaranteed convergent to a local optimal solution.

4 EXPERIMENT
4.1 Datasets
Table 1 lists six MKC datasets, including BBCSport

1
, Plant

2
, SensIT

Vehicle
3
, CCV

4
, Flower102

5
, and Reuters

6
. The datasets vary in

type and size, which will provide convincing evaluation for this

work. All the datasets are downloaded form public websites.

4.2 Compared Methods
Ten existing graph or kernel based multi-view clustering (MVC)

models are adopted as baseline, i.e.

(1) AKKM conducts KKM in average kernel space.

(2) MKKM [33] combines base kernels with learned weights.

(3)MKKM-MR [34] proposes a matrix-induced regularization to

avoid the sparsity of weight.

(4) SWMC [56] is a self-weighted method.

(5) ONKC [36] learns the optimal neighborhood kernel.

(6) LFMKC [39] maximizes the alignment of permuted base parti-

tions and the consensus one.

(7) SPMKC [57] simultaneously extract the global and local clus-

tering structures by graph learning in MVC.

(8) CAGL [58] fuses a consensus graph across multiple kernels by

graph learning with rank constraint.

(9) OPLF [42] is a one-pass version of LFMKC.

(10) HKMC [41] reduces the dimension of data representation hi-

erarchically rather than abruptly.

Note that (i) the kernel fusion MKC algorithms, including AKKM,

MKKM, MKKM-MR, and ONKC, (ii) graph learning based method

SWMC, (iii) graph based MKC models, i.e. SPMKC and CAGL, share

the similar computational complexity, i.e. O(𝑛3). (iv) late fusion
based algorithms, i.e. LFMKC and OPLF, are of O(𝑛) complexity.

Since HKMC involves eigenvalue decomposition during the opti-

mization, it costs O(𝑛3) complexity.

1http://mlg.ucd.ie/datasets/bbc.html
2https://bmi.inf.ethz.ch/supplements/protsubloc
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
4https://www.ee.columbia.edu/ln/dvmm/CCV/
5http://www.robots.ox.ac.uk/˜vgg/data/flowers/
6http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

4.3 Experimental Setup
For theMKCdatasets, we suppose the real clusters𝑘 is pre-knowledge.

All the public datasets are centered and normalized by following

[31]. For the methods involving 𝑘-means, the cluster centroids are

initialized 50 times randomly and we report the average results,

reducing the randomness. For the compared methods, the involved

hyper-parameters of their public codes are carefully tuned accord-

ing to authors’ settings. For the proposed MKC-DNM model, the

involved parameter M in the optimization is determined in the fol-

lowing way to accelerate the procedure:M is firstly set with a small

value, then in each iteration, we multiply M by two until satisfying

the convergence condition, i.e. d = ˆd. The clustering performance is

analyzed by four metrics, i.e. Accuracy (ACC), Normalized Mutual

Information (NMI), Purity, and Adjusted Rand Index (ARI) [59–63].

The experiments are conducted on a computer with Intel Core i9

10900X CPU (3.5GHz), 64GB RAM, and MATLAB 2020b (64bit).

4.4 Clustering Performance
Table 2 lists four metrics comparison. The best results are marked

in bold, the second best ones are marked in italic underline, and

‘N/A’ means unavailable results due to out of memory or time-out

errors. Moreover, we record the average rank for a reference. From

the reported results, we have the following observations:

1) The proposed algorithm exhibits the best or second best perfor-

mance on six datasets. Compared to the late fusion based MKC

methods, i.e. LFMKC, OPLF, and HMKC methods, our algorithm

exhibits obvious improvement on most datasets, owing to our

noise minimization mechanism.

2) Especially, HMKC can be considered as the most powerful com-

petitor in MKC, our model still achieves comparable and better

solutions on most datasets, with an obvious margin of 15.71%,

2.59%, 5.93%, 5.32%, 1.73%, and 1.33% of ACC on six datasets.

We emphasize that our model is parameter-free in contrast to

HMKC which introduces two empirical hyper-parameters and

reports the best solution.

3) According to the average rank, our algorithm achieves the first

rank over HMKC, LFMKC and OPLF methods, illustrating the

superiority of our MKC-DNM algorithm.

4.5 Computation Time Comparison
Table 3 records the comparison of CPU time, including ‘Tune Time’

and ‘Run Time’. ‘Tune Time’ records the execution time including

hyper-parameter tuning. ‘Run Time’ records single running time. ‘-’

denotes a parameter-free model. ‘N/A’ denotes unavailable results

due to memory-out or time-out errors. Note that OPLF is parameter-

free but requires 20 times computation to reduce the randomness

of 𝑘-means. From the results, we observe that:

1) Compared to late fusion based LFMKC, OPLF, and HMKC, our

model achieves comparable or shorter ‘Run Time’ than LFMKC

and OPLF on most datasets, validating they share linear compu-

tational complexity. Not surprisingly, our model requires much

less time than HMKC which has O(𝑛3) complexity. Since the

compared ones involve hyper-parameters or repeatably compu-

tation, they need much more ‘Tune Time’ than our MKC-DNM.

2) Compared to parameter-free kernel fusion based AKKM and

MKKM with O(𝑛3) complexity, although our model with O(𝑛)
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Table 2: Comparing the ACC, NMI, purity and ARI of eleven algorithms on six MVC datasets. The best one is marked in bold,
the second best is marked in italic underline. ‘N/A’ denotes out of memory and time-out errors. ‘Average Rank’ records the
average rank across six datasets.

Datasets AKKM

MKKM MKKM-MR SWMC ONKC LFMKC SPMKC CAGL OPLF HMKC

Proposed

[33] [34] [56] [36] [39] [57] [58] [42] [41]

Number of parameter - - 1 - 2 1 2 2 - 2 -

ACC (%)

BBCSport 39.47 39.38 39.51 36.76 39.71 60.06 46.51 71.51 60.85 71.90 87.61
Plant 61.28 56.05 50.27 38.94 41.43 59.53 32.87 43.09 48.51 59.21 61.79

SensIT Vehicle 53.73 53.36 54.13 34.67 54.21 66.28 54.20 34.40 54.87 66.60 72.53
CCV 19.63 17.99 21.24 10.84 22.39 25.13 9.67 12.58 22.74 33.31 35.04

Flower102 27.07 22.41 40.22 6.72 39.55 38.45 N/A 26.25 29.78 48.21 47.93
Reuters 45.46 45.44 46.15 27.12 41.85 45.68 N/A N/A 44.65 46.84 48.17

Average Rank 6.33 7.83 5.50 10.00 6.33 3.83 8.50 7.80 5.33 2.17 1.17

NMI (%)

BBCSport 15.74 15.69 15.77 2.63 16.10 40.38 23.89 72.74 41.46 50.50 69.70
Plant 26.53 19.49 20.37 0.51 10.49 23.35 0.21 11.90 13.67 27.98 31.06

SensIT Vehicle 10.83 10.25 11.32 1.55 11.31 23.53 20.31 1.45 12.28 22.08 32.09
CCV 16.84 15.04 18.03 1.07 18.52 20.09 1.60 6.08 18.72 29.85 30.79

Flower102 46.02 42.67 56.71 5.51 56.11 54.94 N/A 45.09 46.77 61.92 61.73
Reuters 27.37 27.35 25.30 1.35 22.27 27.39 N/A N/A 27.09 31.04 30.64

Average Rank 6.33 7.83 5.83 10.33 6.67 3.67 7.75 7.40 5.33 2.00 1.50

Purity (%)

BBCSport 48.89 48.86 48.91 37.50 49.13 68.78 52.39 73.90 68.57 74.65 87.61
Plant 61.28 56.05 56.71 39.36 49.02 59.53 39.15 46.81 52.87 59.77 62.10

SensIT Vehicle 53.73 53.36 54.13 35.13 54.21 66.28 54.20 34.40 54.87 66.60 72.53
CCV 23.75 22.18 23.74 11.35 24.64 28.16 11.78 13.58 26.52 37.05 38.32

Flower102 32.27 27.79 46.34 8.08 45.63 44.56 N/A 31.33 34.03 54.81 54.93
Reuters 53.01 52.94 52.15 28.25 52.63 53.23 N/A N/A 52.92 53.91 55.37

Average Rank 6.00 7.83 6.33 10.17 6.00 3.67 8.25 8.00 5.33 2.17 1.00

ARI (%)

BBCSport 9.28 9.25 9.31 0.47 9.63 31.57 14.30 56.64 30.90 44.94 69.60
Plant 24.64 17.42 19.03 -0.25 9.78 21.66 -0.39 1.76 12.28 24.41 28.90

SensIT Vehicle 10.84 10.29 11.33 0.09 11.36 25.32 13.99 0.03 13.57 25.55 35.51
CCV 6.60 5.75 7.15 -0.02 7.74 9.44 -0.01 0.29 8.02 14.74 15.70

Flower102 15.46 12.06 25.49 0.10 24.86 25.46 N/A 2.28 18.92 34.34 34.23
Reuters 21.84 21.82 23.08 0.09 20.32 22.10 N/A N/A 21.25 22.59 22.72

Average Rank 6.33 7.83 5.00 10.33 6.50 3.67 7.75 8.00 5.67 2.33 1.33

(a) ACC (b) NMI (c) ACC (d) NMI (e) ACC (f) NMI

Figure 4: Comparing the strongest competitor HMKC and our algorithm on BBCSport, CCV and Flower102. The red slice
denotes the performance of our parameter-free MKC-DNM. The 3-D bar denotes the results of HKMC which involves two
hyper-parameters tuning by grid search.
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Table 3: Comparing the CPU time. ‘Tune Time’ denotes execution time including hyper-parameter tuning. ‘Run Time’ denotes
running time for this algorithm. ‘-’ denotes a parameter-free algorithm. ‘N/A’ denotes out of memory and time-out errors.

Datasets AKKM MKKM MKKM-MR SWMC ONKC LFMKC SPMKC CAGL OPLF HMKC Proposed

BBCSport

Tune Time - - 2.17 - 155.13 0.74 28.88 185.68 1.78 27.04 -

Run Time 0.04 0.04 0.07 7.17 0.16 0.02 0.80 1.15 0.09 0.38 0.02

Plant

Tune Time - - 1032.42 - 31740.88 25.19 1119.20 9813.97 21.04 1542.74 -

Run Time 0.16 3.88 33.30 101.68 33.03 0.81 31.09 60.58 1.05 21.43 15.29

SensIT Vehicle

Tune Time - - 16.63 - 1734.24 3.28 441.30 1532.34 3.41 127.52 -

Run Time 0.04 0.56 0.54 57.23 1.80 0.11 12.26 9.46 0.17 1.77 0.22

CCV

Tune Time - - 1598.44 - 347868.59 208.92 364927.26 181525.46 148.10 21775.50 -

Run Time 1.64 42.67 51.56 5512.67 361.99 6.74 10136.87 1120.53 7.40 302.44 55.99

Flower102

Tune Time - - 4343.86 - 624586.09 1195.65 N/A 382874.57 973.52 395255.46 -

Run Time 7.27 109.76 140.12 7612.89 649.93 38.57 N/A 2363.42 48.68 5489.66 237.29

Reuters

Tune Time - - 49510.69 - 3743171.77 1571.38 N/A N/A 983.08 93400.45 -

Run Time 11.43 830.46 1597.12 84059.26 3895.08 50.69 N/A N/A 49.15 1297.23 44.57
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(d) Reuters

Figure 5: Evolution of clustering performance during the
iterations on Plant, CCV, Flower102, and Reuters.

complexity requires more time on several datasets, which is

mainly due to our more complex optimization, we believe that

more computational cost is a worthwhile sacrifice for much

better clustering performance.

3) Compared to other methods with O(𝑛3) complexity, our model

exhibits significant superiority in effectiveness and efficiency.

4.6 Comparison to Empirical HKMC Method
To further compare our MKC-DNM algorithm and the strongest

competitor HKMC method. Figure 4 plots the results of ours and

HKMC on BBCSport, CCV and Flower102.

Following the original hyper-parameter setting of [41], i.e. 𝑐1
varies in [3k, 4k, · · · , 10k] and 𝑐2 varies in [2k, 3k, · · · , 10k] with
total 72 times computation by grid search. As the result shows,

our parameter-free MKC-DNM surpasses HKMC with an obvious

margin in the wide searching region. Although the proposed MKC-

DNM may exhibit slight weaker performance at several search-

ing regions, we emphasize that our model does not require time-

consuming hyper-parameter tuning but achieves promising perfor-

mance, which directly serves for unsupervised clustering.

4.7 Evolution of Clustering Performance
To evaluate the effectiveness of our learning strategy to mini-

mize dual noise within partition matrices in kernel space. Figure

5 plots the evolution of ACC, NMI, purity, and ARI on Plant, CCV,

Flower102, and Reuters. As can be seen, four metrics increase and

keep stable during the iterations, which sufficiently illustrates the

effectiveness of our algorithm.

5 CONCLUSION
This work investigates an essential issue that how to minimize the

noise inside the partition matrix. In this paper, we propose a novel

parameter-free MKC algorithm with dual noise minimization to

tackle this issue. Specifically, we first rigorously define the dual

noise mathematically and separate it into dual parts, i.e. N-noise

and C-noise, then we develop a unified and compact framework

to minimize them. We design an efficient two-step iterative strat-

egy to solve the model. To our best knowledge, it is the first time

to investigate dual noise within the partition in the kernel space,

distinguishing our work from existing researches. We observe that

dual noise will pollute the block diagonal structures and incur

the degeneration of clustering performance, and C-noise exhibits

stronger destruction than N-noise. Minimizing dual noise signifi-

cantly improves the clustering performance. Extensive experiments

illustrate the effectiveness and efficiency of our proposed algorithm

compared to the existing methods.
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A PROOF OF LEMMA
Recall the definition of dual noise, i.e.

𝑣

(
EN𝑝

)
∈ 𝑁

(
H∗⊤

)
=

{
x | H∗⊤x = 0

}
, ∀𝑝 ∈ Δ𝑚, (24)

𝑣

(
EC𝑝

)
∈ 𝐶

(
H∗) = {

y | ∃ x, s.t. y = H∗x
}
, ∀𝑝 ∈ Δ𝑚, (25)

where Δ𝑚 = {1, 2, · · · ,𝑚}.

A.1 Proof of Lemma 1
Lemma A.1. Tr

(
EN𝑝H

∗H∗⊤
)
= 0, ∀𝑝 ∈ Δ𝑚 .

Proof. The spectral decomposition of EN𝑝 is formulated as

EN𝑝 =
∑︁
𝑖

𝜆𝑖𝑣𝑖𝑣
⊤
𝑖 . (26)

where 𝑣𝑖 is the unit eigenvector with corresponding eigenvalue 𝜆𝑖 .

According to Eq. (24), we have 𝜆𝑖H∗⊤𝑣𝑖 = 0. We can further

derive that:

Tr

(
EN𝑝H

∗H∗⊤
)
= Tr

(∑︁
𝑖

𝜆𝑖𝑣𝑖𝑣
⊤
𝑖 H

∗H∗⊤
)

=Tr

(∑︁
𝑖

𝑣⊤𝑖 H
∗
(
𝜆𝑖H∗⊤𝑣𝑖

))
= 0.

(27)

This completes the proof. □

A.2 Proof of Lemma 2
Lemma A.2. Tr

(
EC𝑝H

∗H∗⊤
)
= Tr

(
EC𝑝

)
, ∀𝑝 ∈ Δ𝑚 .

Proof. The spectral decomposition of EC𝑝 is formulated as

EC𝑝 =
∑︁
𝑖

𝜆𝑖𝑣𝑖𝑣
⊤
𝑖 . (28)

where 𝑣𝑖 is the unit eigenvector with corresponding eigenvalue 𝜆𝑖 .

According to Eq. (25), we have 𝑣𝑖 = H∗𝑥𝑖 , where 𝑥𝑖 is a unit

vector. We can further derive that:

Tr

(
EC𝑝H

∗H∗⊤
)
= Tr

(∑︁
𝑖

𝜆𝑖𝑣𝑖𝑣
⊤
𝑖 H

∗H∗⊤
)

=Tr

(∑︁
𝑖

𝜆𝑖

(
H∗⊤𝑣𝑖

)⊤ (
H∗⊤𝑣𝑖

))
=Tr

(∑︁
𝑖

𝜆𝑖𝑥
⊤
𝑖 𝑥𝑖

)
=

∑︁
𝑖

𝜆𝑖 = Tr

(
EC𝑝

)
.

(29)

This completes the proof. □

A.3 Proof of Lemma 3
Lemma A.3. EN𝑝 is positive semi-definite (PSD) and EC𝑝 is negative

semi-definite (NSD).

Proof. For all x ∈ R𝑛 , we separate it into two parts:

x = xN + xC, (30)

where xN ∈ 𝑁
(
H∗⊤)

and xC ∈ 𝐶 (H∗) are existing and unique.

According to Eq. (25), we have xC = H∗y, where ∥y∥2
2
= ∥xC∥2

2
.

Then we have

H∗⊤xN = 0, EC𝑝 xN = 0, EN𝑝 xC = 0. (31)

We can further derive that:

x⊤EN𝑝 x = x⊤
N
EN𝑝 xN

=x⊤
N
U𝑝U⊤

𝑝 xN − x⊤
N

(
H∗H∗⊤ + E𝐶𝑝

)
xN

=x⊤
N
U𝑝U⊤

𝑝 xN ≥ 0,

(32)

and

x⊤EC𝑝 x = x⊤
C
EC𝑝 xC

=x⊤
C
U𝑝U⊤

𝑝 xC − x⊤
C

(
H∗H∗⊤ + E𝑁𝑝

)
xC

=x⊤
C
U𝑝U⊤

𝑝 xC − x⊤
C
H∗H∗⊤xC

=x⊤
C
U𝑝U⊤

𝑝 xC − y⊤y

≤x⊤
C
xC − y⊤y = 0.

(33)

This completes the proof. □
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