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Abstract

Attributed graph clustering is a basic yet essential
method for graph data exploration. Recent efforts
over graph contrastive learning have achieved im-
pressive clustering performance. However, we ob-
serve that the commonly adopted InfoMax opera-
tion tends to capture redundant information, lim-
iting the downstream clustering performance. To
this end, we develop a novel method termed at-
tributed graph clustering with dual redundancy re-
duction (AGC-DRR) to reduce the information re-
dundancy in both input space and latent feature
space. Specifically, for the input space redun-
dancy reduction, we introduce an adversarial learn-
ing mechanism to adaptively learn a redundant
edge-dropping matrix to ensure the diversity of the
compared sample pairs. To reduce the redundancy
in the latent space, we force the correlation ma-
trix of the cross-augmentation sample embedding
to approximate an identity matrix. Consequently,
the learned network is forced to be robust against
perturbation while discriminative against differ-
ent samples. Extensive experiments have demon-
strated that AGC-DRR outperforms the state-of-
the-art clustering methods on most of our bench-
marks. The corresponding code is available at
https://github.com/gongleii/AGC-DRR.

1 Introduction
Deep clustering methods, which improve the performance of
complicated clustering problems with the help of deep net-
work architecture, have achieved significant progress on ap-
plications like semantic segmentation [Caron et al., 2018],
social network analysis [Zhong et al., 2016], and face recog-
nition [Schroff et al., 2015]. However, the successes of
these methods are mostly rooted in the advances of auto-
encoder [Guo et al., 2017; Xie et al., 2016], convolutional
neural networks, and generative adversarial networks [Xu et
al., 2019], which are not applicable to the non-Euclidean
graph datasets. However, structural information is also found
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Figure 1: Illustration of the cosine similarity matrices in the latent
space on the datasets ACM and DBLP with the corresponding meth-
ods, i.e., GAE and AGC-DRR. The samples are permuted to have
those that belong to the same cluster located beside each other.

essential for data analysis [Zhang et al., 2021]. As a con-
sequence, graph convolutional network (GCN) [Kipf and
Welling, 2016a] based clustering algorithms, for example,
deep attentional embedded graph clustering (DAEGC) [Wang
et al., 2019] and deep fusion clustering network (DFCN) [Tu
et al., 2021], are recently attracting increasing attention.

Nevertheless, the above GCN-based methods learn node
representation by adopting the graph structure reconstruction
principle, which may ignore the subtle but essential relation-
ships and lead to indiscriminative representation among sam-
ples [Suresh et al., 2021]. The problem is especially se-
vere in the unsupervised learning scenario. Consequently,
graph contrastive learning (GCL), which focuses on max-
imizing mutual information (InfoMax) between representa-
tions of the same instance with different augmentations, is
proposed to alleviate the problem [Velickovic et al., 2019;
Zhao et al., 2020]. It has achieved considerable improvement
in node embedding and clustering. By utilizing two decou-
pled GCN-based encoders, multi-view graph representation
learning (MVGRL) [Hassani and Khasahmadi, 2020] con-
ducts cross-view contrastive learning to facilitate invariant
node embedding learning. Although good performance has
been achieved, the InfoMax principle is found to risk captur-
ing task-unrelated information, which is also able to satisfy
InfoMax [Tschannen et al., 2019] and lead to sub-optimal
node representation. To solve the problem, adversarial-
GCL [Suresh et al., 2021] integrates information bottleneck
theory (IB) [Tishby et al., 2000] with self-supervised GCNs
by an adversarial learning mechanism to reduce redundant in-
formation in graph-structure data for graph-level tasks. How-
ever, it ignores the node-level redundancy reduction. Moti-



Figure 2: The proposed AGC-DRR consists of adversarial sub-
networks pairs, N1 is a structure augmented sub-network, which
adaptively learns a redundant edge-dropping matrix to obtain aug-
mented graph by InfoMin principle to reduce redundant information
in input space, and N2 is a clustering sub-network optimized by
InfoMax principle and a LMSE loss which decreases latent space
redundancy. The clustering results are obtained by the average of
C1 and C2.

vated by decreasing redundant information in node clustering
tasks, we propose attributed graph clustering with dual redun-
dancy reduction (AGC-DRR) to reduce the information re-
dundancy both in input space and latent feature space. Specif-
ically, for the input space redundancy reduction, we introduce
an adversarial learning mechanism to adaptively learn a re-
dundant edge-dropping matrix to ensure the diversity of the
compared sample pairs with the anchor of the original graph.
Subsequently, to reduce the redundancy in latent space, we
force the correlation matrix of the cross-augmentation sample
embedding to approximate an identity matrix. Consequently,
the learned network is more robust against perturbation while
discriminative against different samples. In Fig. 1, we com-
pare the discriminative capability of GAE and our proposed
AGC-DRR by calculating the cosine similarity matrices in
the learned latent space, respectively. As we can see, when
adopting the same encoder structure, the discriminative ca-
pability of the sample embedding is largely improved by our
proposed dual redundancy reduction mechanism. We list the
contributions of this paper as follows:

• AGC-DRR is the first attributed graph clustering algo-
rithm that adaptively learns the adjacent matrix with an
adversarial learning mechanism to the best of our knowl-
edge.

• We propose a dual redundancy reduction strategy that
decreases the information redundancy in both the input
space and latent feature space to improve clustering per-
formance.

• AGC-DRR is free from pre-training, which makes the
algorithm efficient and more stable.

• Extensive experimental results have demonstrated that

AGC-DRR outperforms the state-of-the-art clustering
methods on most of the compared datasets.

2 Related Work
2.1 Deep Graph Clustering
A proper self-supervised principle is essential for deep
clustering methods. Following the auto-encoder frame-
work, graph auto-encoder (GAE) and variational graph auto-
encoder (VGAE) [Kipf and Welling, 2016b] learn node rep-
resentations by reconstructing the adjacent matrix. Deep at-
tentional embedded graph clustering (DAEGC) [Wang et al.,
2019] integrates GCNs with a self-attention mechanism to
capture more informative relationships among nodes. Also,
adversarially regularized graph auto-encoder (ARGA) [Pan
et al., 2020] introduces an adversarial learning mechanism
into GAE to improve the quality of learned representation.
The mentioned methods improve the clustering performance
by carefully exploiting the structural information, other meth-
ods like SDCN [Bo et al., 2020] and DFCN [Tu et al., 2021]
achieve the target through learning both the attribute and
structural information. Specifically, they combine the auto-
encoder and GAE with a carefully designed mechanism for
more comprehensive information merging. Moreover, dif-
ferent from the above methods, deep graph infomax (DGI)
[Velickovic et al., 2019] learns node embedding with an Info-
Max principle. After that, various GCL-based algorithms are
proposed by maximizing mutual information between repre-
sentations of the same instance with different augmentation
methods [Zhao et al., 2021; Hassani and Khasahmadi, 2020].
However, the graph structural augmentation strategy in most
existing GCL-based methods is pre-defined edge perturba-
tion, which can not be optimized and is separated from repre-
sentation learning and clustering task. To have the augmen-
tation better serve the task of graph clustering, we design a
special sub-network to learn the structure augmented graph
adaptively. The learning processes of graph structure and
clustering are united into a common adversarial optimization
framework.

2.2 Information Maximization Principle
Driven by the great success of contrastive learning (CL) of
CNN-based methods in computer version scenarios, great
progress has also been witnessed in the field of unsupervised
graph learning. Specifically, GCL applies CL on graphs to
capture subtle relationships for high-quality node represen-
tation and clustering performance improvement. The trail-
blazing work DGI [Velickovic et al., 2019] proposes to ob-
tain node representations by maximizing mutual information
[Hjelm et al., 2018] between the local patch and global sum-
mary of a graph. Further, mutual information is developed
into graphs with contrastive augmented pairs generated by
edge-dropping or edge perturbation [Zhao et al., 2020]. How-
ever, researchers have found that the InfoMax principle could
put the corresponding algorithm at the risk of collecting too
much trivial and downstream task-irrelevant information for
over-accurate node recognition [Suresh et al., 2021]. As a
consequence, information bottleneck (IB) theory [Tishby et



Notations Meaning

G Original graph
G′ Structure augmented graph
N1 Structure augmented sub-network
N2 Clustering sub-network
IN ∈ RN×N Identity matrix
X ∈ RN×d Attribute matrix
A ∈ RN×N Original adjacent matrix
Ā ∈ RN×N Normalized adjacent matrix
Ã ∈ RN×N Augmented adjacent matrix
Z ∈ RN×d′

Graph embedding in N1

Zv ∈ RN×d′
Graph embedding of the v-th view in N2

Cv ∈ RN×K Clustering indicator matrix in the v-th view
E ∈ RM×2d′

Edge embedding
W ∈ RM×1 Edge-oriented weight vector
W′ ∈ RN×N Edge-oriented weight matrix
D ∈ RN×N Degree matrix

Table 1: Basic notations for the proposed AGC-DRR

al., 2000], which aims to obtain minimal sufficient informa-
tion for downstream tasks, is taken into consideration to avoid
this issue. Graph information bottleneck (GIB) [Wu et al.,
2020] applies IB for graph representation learning and then
GIB is used in [Yu et al., 2020] to address subgraph recogni-
tion problem.

3 Method
In this section, we will introduce the proposed attributed
graph clustering with dual redundancy reduction (AGC-
DRR) algorithm, which unifies the graph structural augmen-
tation and sample clustering into a common min-max opti-
mization framework to reduce the information redundancy in
both input and latent feature spaces. As shown in Fig. 2,
AGC-DRR mainly consists of two components, i.e., struc-
ture augmented sub-network (N1) and clustering sub-network
(N2). Next, we will first introduce the basic notations and
preliminaries, and then introduce N1 and N2 in detail, re-
spectively.

3.1 Basic Notations
Given an undirected graph G = {E ,V} with K categories,
where E and V = {v1, v2, . . . , vN} are the corresponding
edge set and node set, M = |E|, N = |V|. X ∈ RN×d

is the node attribute matrix and d is the raw attribute dimen-
sion. A ∈ RN×N is the original adjacent matrix, Aij = 1
denotes that there exists a connection between node vi and
node vj , otherwise, Aij = 0. The notations are summarized
in Table 1.

3.2 Preliminaries
Graph Encoder As shown in Fig. 2, the GCN-Encoder is
a three-layer graph convolutional network (GCN) [Kipf and
Welling, 2016a] that aggregates the first-order neighbor in-
formation to update the embedding of the central node for
representation learning, which is formulated as below:

Z(l) = σ(ĀZ(l−1)H(l)), (1)

Ā = D− 1
2 (A+ I)D− 1

2 , (2)

where Ā ∈ RN×N denotes the normalized adjacent matrix,
D = diag(d1, d2, . . . , dN ) ∈ RN×N is a degree matrix,
dn =

∑N
j=1 Anj , and I ∈ RN×N is an identity matrix.

Z(l) ∈ RN×d(l)

and H(l) ∈ Rd(l−1)×d(l)

denote the latent
representations and network parameters of the l-th layer, re-
spectively. σ denotes the Tanh activation function.
Graph Contrastive Learning Different from the auto-
encoder-based methods [Kipf and Welling, 2016b; Wang et
al., 2019] that learn node representations by reconstructing
the graph structure, graph contrastive learning (GCL) aims to
maximize the agreement between positive sample pairs and
minimize the agreement between negative sample pairs. To
this end, mutual information maximization (InfoMax) [Has-
sani and Khasahmadi, 2020] is a commonly adopted measure
to estimate the agreement between sample pairs. The graph
contrastive learning objective is generally formulated as:

I(Z1,Z2) =
1

N

N∑
i=1

log
exp(sim(z1i , z

2
i ))∑N

i′=1,i′ ̸=i exp(sim(z1i , z
2
i′))

, (3)

where I(·, ·) and sim(·, ·) denote the mutual information
and the cosine similarity, respectively. Z1 ∈ RN×d′

and
Z2 ∈ RN×d′

are two-view graph embeddings learned from
the corresponding views, z1i and z2i refer to the i-th rows in
Z1 and Z2, respectively.

3.3 Clustering Sub-network
Most existing GCL-based clustering methods focus on learn-
ing node representations by maintaining the consistency of
the latent feature spaces of different views as Eq. (3) and then
utilizing classic clustering algorithms (e.g., K-means [Wong,
1979]) to obtain the clustering results over the learned repre-
sentations. In this circumstance, the optimization processes
of representation learning and node clustering are discon-
nected, thus leading to sub-optimal clustering performance.
To solve this issue, we develop a one-step clustering sub-
network that can directly predict the probabilities of cluster-
ID for each sample. Specifically, after obtaining the graph
embeddings of both views, we transform them into a K-
dimension clustering space by feeding Z1 and Z2 into a 1-
layer Multi-layer Perception (MLP) with a softmax activation
function, where K refers to the number of clusters. The above
learning process is formulated as:

Cv = softmax(MLP (Zv)), v ∈ {1, 2}, (4)

where Cv ∈ RN×K denotes the clustering indicator matrix in
the v-th view. To maintain the consistency of two-view clus-
tering spaces, we reformulate the Eq. (3) from the perspective
of the sample level as below:

I(C1,C2) =
1

N

N∑
i=1

log
exp(sim(c1i , c

2
i ))∑N

i′=1,i′ ̸=i exp(sim(c1i , c
2
i′))

, (5)



Algorithm 1 The training procedure of AGC-DRR
Input: Graph data {A, X}; Number of clusters K; Maxi-
mum iterations T ; Hyper-parameter λ
Output: Clustering results

1: for t = 1 : T do
2: Calculate W and Ã to obtain the structure augmented

graph by Eq. (9) and Eq. (10), respectively;
/∗ Fix N2 and optimize N1∗/

3: Calculate C1 and C2 by Eq. (4);
4: Update N1 by minimizing the objective in Eq. (11).

/∗ Fix N1 and optimize N2∗/
5: Calculate Z1 and Z2 by Eq. (1);
6: Calculate C1 and C2 by Eq. (4);
7: Update N2 by maximizing the objective in Eq. (12).
8: end for
9: Obtain clustering results over the average of C1 and C2

10: return Clustering results

where c1i and c2i are the i-th rows in C1 and C2, respec-
tively. To improve the robustness of the clustering sub-
network against the perturbation derived from other compo-
nents, we further consider the consistency from the perspec-
tive of cluster level via Eq. (6):

I(C1T,C2T) =
1

K

K∑
j=1

log
exp(sim(c1j

T
, c2j

T
))∑K

j′=1,j′ ̸=j exp(sim(c1j
T
, c2j′

T
))
,

(6)
where c1j

T and c2j
T are the j-th columns in C1 and C2, re-

spectively. In this way, both the similarities of clustering as-
signments for the same instance and node distributions in the
two views are considered to optimize this sub-network to fur-
ther improve the clustering performance. The total mutual
information between two views is formulated as:

I(G,G′) = I(C1,C2) + I(C1T,C2T). (7)

Latent Space Redundancy Reduction Although the Info-
Max principle plays a crucial role in GCL-based methods
for performance improvement, it risks enabling the encoder
to capture redundant information when estimating the agree-
ment of sample pairs. To alleviate this issue, we introduce a
redundancy reduction strategy into the latent space by forcing
the cross-view correlation matrix to approximate an identity
matrix:

LMSE =
1

N

∥∥∥Z1Z2T − IN

∥∥∥2
F
. (8)

This term reduces the redundancy across two-view embed-
dings within the corresponding graphs. By this means, redun-
dant information in the embedding could be minimized and
more discriminative features could be well preserved. Hence,
it makes the learned representations be affected less by irrele-
vant information, thus guaranteeing the quality of latent space
for subsequent clustering tasks.

3.4 Structure Augmented Sub-network
In existing GCL-based methods, edge perturbation is a com-
monly adopted graph augmentation before network learning,

and the augmented graph is generally viewed as the ground
truth information in a fixed pattern. Since the augmented
graph is stemmed from the original graph, it would contain
some incorrect or redundant connections. If these noisy struc-
tures are not eliminated in the network learning process, the
learned clustering space would inherit it in the final step. To
tackle this problem, we design a structure augmented sub-
network to learn a clustering-oriented structural graph, which
would adaptively learn a redundant edge-dropping matrix to
ensure the diversity of the compared sample pairs.
Edge Weight Learner As shown in Fig. 2, there exists an
additional GCN-Encoder in N1 that has an identical architec-
ture as the one in N2. Similarly, this graph encoder accepts
the normalized adjacent matrix Ā and the node attribute ma-
trix X as input and outputs the graph embedding Z ∈ RN×d′

.
The learned graph embedding Z is first adopted to generate
the edge embedding E = {E1,E2, . . . ,EM} ∈ RM×2d′

,
where Em = C(zi, zj), C(·, ·) is a concatenation operation,
zi and zj are the embeddings of central node vi and neigh-
bor node vj . Then the resultant edge embedding E is fed
into a 1-layer MLP with sigmoid activation function to obtain
the edge-oriented weight vector W = [w1, w2, . . . , wM ]

T ∈
RM×1 as Eq. (9):

wi = sigmoid(MLP (Ei)), (9)
where wi means the probability of the corresponding original
edge ei being preserved in the augmented graph. Accord-
ingly, 1− wi denotes the edge-dropping probability.

After that, we transform the weight vector W ∈ RM×1

into an edge-oriented weight matrix W′ ∈ RN×N to gen-
erate the structure augmented graph G′. Specifically, we fill
W′

ij with wm if node vi and node vj are connected via the
edge em in the original graph, otherwise, W′

ij is set to zero
value. The construction of augmented adjacent matrix Ã is
formulated as follows:

Ã = W′ ⊙ Ā, (10)

where ⊙ is the Hadamard product, i.e., Ãij = W′
ij × Āij .

Thus, the final augmented graph G′ consists of the augmented
adjacent matrix Ã and the node attribute matrix X.

By minimizing Eq. (7), the structure augmented sub-
network is enabled to reduce the redundant information in the
input space to ensure the diversity of the compared sample
pairs. In this way, the learning processes of graph structure
and clustering are united into a common adversarial optimiza-
tion framework, which could make both sub-networks benefit
each other to alleviate the risk of information redundancy for
better clustering.
Regularization Term To filter the redundant information
as much as possible, we introduce a regularization term
1
M

∑M
i=1 wi into Eq. (7) to control the ratio of structure infor-

mation preservation and reduction, where wi refers the prob-
ability that i-th edge gets preserved.

In summary, the final objective function for N1 and N2 can
be formulated as Eq. (11) and Eq. (12), respectively.

min I(G,G′) +
λ

M

M∑
i=1

wi, (11)



Dataset #Samples #Dimensions #Edges #Clusters

ACM 3025 1870 13128 3
DBLP 4057 334 3528 4
CITE 3327 3703 4552 6

AMAP 7650 745 119081 8

Table 2: Summary of datasets.

max I(G,G′)− LMSE , (12)
where λ is a pre-defined hyper-parameter. The training pro-
cedure of AGC-DRR is presented in Algorithm 1.

4 Experiment
4.1 Experiments Setup
Benchmark Datasets We evaluate the proposed AGC-
DRR on four public benchmark datasets including ACM1,
DBLP2, CITE3, and AMAP [Shchur et al., 2018]. The brief
descriptions of these datasets are summarized in Table 2.
Training Details We conduct experiments to evaluate the
proposed AGC-DRR on the PyTorch platform with the
NVIDIA GeForce RTX 3080. Within an adversarial learning
framework, N1 and N2 are optimized by minimizing Eq. (11)
and maximizing Eq. (12), respectively, and they are trained
alternately. We train AGC-DRR on all benchmark datasets
for at least 100 iterations until convergence. In the testing
phase, we calculate the average of both clustering indicator
matrices, i.e., C1 and C2, and directly predict the cluster-ID
for each sample using a softmax function. To avoid the ad-
verse effect of randomness, we run each experiment 10 times
and report the average values with standard deviations.
Evaluation Metrics Here we adopt four public metrics
to evaluate clustering performance for all compared meth-
ods, including Clustering Accuracy (C-ACC), Average Rand
Index (ARI), Normalized Mutual Information (NMI), and
macro F1-score (F1).
Parameter Settings For MVGRL and ARGA/ARVGA
methods, we reproduce the official source code by follow-
ing the parameter settings of their original papers and re-
port the corresponding clustering results. For other compared
methods, we directly record the clustering results reported in
DFCN [Tu et al., 2021]. For our proposed AGC-DRR, we
optimize it with the Adam optimizer, the learning rates for
N1 and N2 are set to 1e-3 and 1e-4 on CITE, and 1e-4, 5e-4
on others, respectively. The regularized hyper-parameter λ is
set as 1 for all datasets.

4.2 Clustering Results and Analysis
To verify the superiority of AGC-DRR, we compare it with
13 clustering methods, including 1) one classic cluster-
ing method: K-means [Wong, 1979]; 2) three deep neu-
ral network (DNN)-based clustering methods: AE [Hin-
ton and Salakhutdinov, 2006], DEC [Xie et al., 2016], and

1https://dl.acm.org/
2https://dblp.uni-trier.de
3http://citeseerx.ist.psu.edu/index

(a) ACM (b) CITE

Figure 3: Effect of Different Graph Structure.

(a) AE (b) GAE (c) DFCN (d) OURS

Figure 4: t-SNE visualization of different methods on ACM and
DBLP, respectively.

IDEC [Guo et al., 2017]; and 3) nine graph neural net-
work (GNN)-based clustering methods: GAE/VGAE [Kipf
and Welling, 2016b], ARGA/ARVGA [Pan et al., 2020],
DAEGC [Wang et al., 2019], MVGRL [Hassani and
Khasahmadi, 2020], DFCN [Tu et al., 2021], and
SDCN/SDCNQ [Bo et al., 2020].

Table 3 presents the clustering performance comparison of
all compared clustering algorithms. From these results, we
can observe that 1) compared with the early clustering meth-
ods that exploit the node attributes but ignore the structure
information, i.e., K-means, AE, DEC, and IDEC, AGC-DRR
outperforms them by a large margin, these results indicate
that the structure information among data samples is signif-
icant to learn more discriminative node representations; 2)
AGC-DRR also achieves competitive performance on most
datasets compared with GNN-based methods that consider
both attribute and structure information for clustering. Tak-
ing the metric F1 for instance, it exceeds DFCN by 1.75%,
4.20%, 0.52%, and 1.14% performance increments, respec-
tively. This is because that AGC-DRR considers reducing the
redundant information in both input and latent feature spaces,
thus the network is enabled to learn a clustering-friendly
graph augmentation as well as discriminative latent represen-
tations. In addition, for the less satisfying performance on the
CITE dataset, we think the reason is that the attribute infor-
mation of CITE plays a more important role than its struc-
tural information in the performance of clustering which may
be caused by a higher attribute dimension. Since DFCN and
MVGRL have extra architectures to extract attribute infor-
mation, the attribute embeddings of these methods are better
learned. However, AGC-DRR is more balanced, it provides
more stable performance overall for four compared datasets.



Method ACM DBLP
C-ACC(%) NMI(%) ARI(%) FI(%) C-ACC(%) NMI(%) ARI(%) FI(%)

K-means 67.31 ± 0.71 32.44 ± 0.46 30.60 ± 0.69 67.57 ± 0.74 38.65 ± 0.65 11.45 ± 0.38 6.97 ± 0.39 31.92 ± 0.27
AE 81.83 ± 0.08 49.30 ± 0.16 54.64 ± 0.16 82.01 ± 0.08 51.43 ± 0.35 25.40 ± 0.16 12.21 ± 0.43 52.53 ± 0.36

DEC 84.33 ± 0.76 54.54 ± 1.51 60.64 ± 1.87 84.51 ± 0.74 58.16 ± 0.56 29.51 ± 0.28 23.92 ± 0.39 59.38 ± 0.51
IDEC 85.12 ± 0.52 56.61 ± 1.16 62.16 ± 1.50 85.11 ± 0.48 60.31 ± 0.62 31.17 ± 0.50 25.37 ± 0.60 61.33 ± 0.56
GAE 84.52 ± 1.44 55.38 ± 1.92 59.46 ± 3.10 84.65 ± 1.33 61.21 ± 1.22 30.80 ± 0.91 22.02 ± 1.40 61.41 ± 2.23

VGAE 84.13 ± 0.22 53.20 ± 0.52 57.72 ± 0.67 84.17 ± 0.23 58.59 ± 0.06 26.92 ± 0.06 17.92 ± 0.07 58.69 ± 0.07
DAEGC 86.94 ± 2.83 56.18 ± 4.15 59.35 ± 3.89 87.07 ± 2.79 62.05 ± 0.48 32.49 ± 0.45 21.03 ± 0.52 61.75 ± 0.67
ARGA 86.29 ± 0.36 56.21 ± 0.82 63.37 ± 0.86 86.31 ± 0.35 64.83 ± 0.59 29.42 ± 0.92 27.99 ± 0.91 64.97 ± 0.66

ARVGA 83.89 ± 0.54 51.88 ± 1.04 57.77 ± 1.17 83.87 ± 0.55 54.41 ± 0.42 25.90 ± 0.33 19.81 ± 0.42 55.37 ± 0.40
SDCNQ 86.95 ± 0.08 58.90 ± 0.17 65.25 ± 0.19 86.84 ± 0.09 65.74 ± 1.34 35.11 ± 1.05 34.00 ± 1.76 65.78 ± 1.22
SDCN 90.45 ± 0.18 68.31 ± 0.25 73.91 ± 0.40 90.42 ± 0.19 68.05 ± 1.81 39.50 ± 1.34 39.15 ± 2.01 67.71 ± 1.51

MVGRL 86.73 ± 0.76 60.87 ± 1.40 65.07 ± 1.76 86.85 ± 0.72 42.73 ± 1.02 15.41 ± 0.63 8.22 ± 0.50 40.52 ± 1.51
DFCN 90.90 ± 0.20 69.40 ± 0.40 74.90 ± 0.40 90.80 ± 0.20 76.00 ± 0.80 43.70 ± 1.00 47.00 ± 1.50 75.70 ± 0.80

Ours 92.55 ± 0.09 72.89 ± 0.24 79.08 ± 0.24 92.55 ± 0.09 80.41 ± 0.47 49.77 ± 0.65 55.39 ± 0.88 79.90 ± 0.45

Method CITE AMAP
C-ACC(%) NMI(%) ARI(%) FI(%) C-ACC(%) NMI(%) ARI(%) FI(%)

K-means 39.32 ± 3.17 16.94 ± 3.22 13.43 ± 3.02 36.08 ± 3.53 27.22 ± 0.76 13.23 ± 1.33 5.50 ± 0.44 23.96 ± 0.51
AE 57.08 ± 0.13 27.64 ± 0.08 29.31 ± 0.14 53.80 ± 0.11 48.25 ± 0.08 38.76 ± 0.30 20.80 ± 0.47 47.87 ± 0.20

DEC 55.89 ± 0.20 28.34 ± 0.30 28.12 ± 0.36 52.62 ± 0.17 47.22 ± 0.08 37.35 ± 0.05 18.59 ± 0.04 46.71 ± 0.12
IDEC 60.49 ± 1.42 27.17 ± 2.40 25.70 ± 2.65 61.62 ± 1.39 47.62 ± 0.08 37.83 ± 0.08 19.24 ± 0.07 47.20 ± 0.11
GAE 61.35 ± 0.80 34.63 ± 0.65 33.55 ± 1.18 57.36 ± 0.82 71.57 ± 2.48 62.13 ± 2.79 48.82 ± 4.57 68.08 ± 1.76

VGAE 60.97 ± 0.36 32.69 ± 0.27 33.13 ± 0.53 57.70 ± 0.49 74.26 ± 3.63 66.01 ± 3.40 56.24 ± 4.66 70.38 ± 2.98
DAEGC 64.54 ± 1.39 36.41 ± 0.86 37.78 ± 1.24 62.20 ± 1.32 76.44 ± 0.01 65.57 ± 0.03 59.39 ± 0.02 69.97 ± 0.02
ARGA 61.07 ± 0.49 34.40 ± 0.71 34.32 ± 0.70 58.23 ± 0.31 69.28 ± 2.30 58.36 ± 2.76 44.18 ± 4.41 64.30 ± 1.95

ARVGA 59.31 ± 1.38 31.80 ± 0.81 31.28 ± 1.22 56.05 ± 1.13 61.46 ± 2.71 53.25 ± 1.91 38.44 ± 4.69 58.50 ± 1.70
SDCNQ 61.67 ± 1.05 34.39 ± 1.22 35.50 ± 1.49 57.82 ± 0.98 35.53 ± 0.39 27.90 ± 0.40 15.27 ± 0.37 34.25 ± 0.44
SDCN 65.96 ± 0.31 38.71 ± 0.32 40.17 ± 0.43 63.62 ± 0.24 53.44 ± 0.81 44.85 ± 0.83 31.21 ± 1.23 50.66 ± 1.49

MVGRL 68.66 ± 0.36 43.66 ± 0.40 44.27 ± 0.73 63.71 ± 0.39 45.19 ± 1.79 36.89 ± 1.31 18.79 ± 0.47 39.65 ± 2.39
DFCN 69.50 ± 0.20 43.90 ± 0.20 45.50 ± 0.30 64.30 ± 0.20 76.88 ± 0.80 69.21 ± 1.00 58.98 ± 0.84 71.58 ± 0.31

Ours 68.32 ± 1.83 43.28 ± 1.41 45.34 ± 2.33 64.82 ± 1.60 78.11 ± 1.69 72.21 ± 1.63 61.15 ± 1.65 72.72 ± 0.97

Table 3: Node clustering performance on four datasets (mean ± std). Best results are bold values and the second best values are underlined.

Dataset Model C-ACC(%) NMI(%) ARI(%) F1(%)

ACM
w/o min-max 92.0±0.1 71.5±0.3 77.6±0.3 92.0±0.1
w/o LMSE 85.7±4.0 59.2±5.3 63.8±7.0 85.6±4.2

Ours 92.6±0.1 72.9±0.2 79.1±0.2 92.6±0.1

DBLP
w/o min-max 64.8±5.6 33.7±2.7 31.6±3.5 64.8±5.6
w/o LMSE 58.0±6.9 29.5±5.9 30.1±7.5 51.8±7.8

Ours 80.4±0.5 49.8±0.7 55.4±0.9 79.9±0.5

CITE
w/o minmax 63.9±4.5 39.9±2.5 40.2±3.6 60.8±4.2
w/o LMSE 61.0±6.4 37.5±3.7 36.7±5.7 57.8±5.6

Ours 68.3±1.8 43.3±1.4 45.3±2.3 64.8±1.6

AMAP
w/o minmax 73.4±4.0 66.8±3.8 56.2±3.5 68.1±5.9
w/o LMSE 72.2±6.7 69.2±3.3 56.3±4.9 65.3±8.1

Ours 78.1±1.7 72.2±1.6 61.2±1.7 72.7±1.0

Table 4: Ablation for each component. w/o min-max and w/o LMSE

indicate that the method with the min-max optimization mechanism
and the MSE objective being removed, respectively.

4.3 Ablation Studies

In this section, we conduct ablation studies to verify the su-
periority of each component in our method. The w/o min-
max method and the w/o LMSE method indicate the net-
work with the proposed min-max optimization mechanism
and the MSE objective being removed, respectively. From
the results in Table 4, some observations can be summa-
rized. AGC-DRR exceeds the method w/o minmax by 0.6%,
15.6%, 4.4%, and 4.7% accuracy increments, and exceeds the
method w/o LMSE by 6.9%, 22.4%, 7.3%, and 5.9% accu-
racy increments on ACM, DBLP, CITE, and AMAP, respec-
tively. These results demonstrate that both components play
an essential role in our method for improving the clustering
performance. On the one hand, the min-max optimization
mechanism could reduce the redundant information in the in-
put space to ensure the diversity of the compared views for a
more reliable structure augmented graph. On the other hand,
LMSE could achieve latent space redundancy reduction to

obtain more discriminative node representations. Both com-
ponents contribute to better clustering performance.

4.4 Effect of Different Graph Structure
To verify the robustness of AGC-DRR, we utilize three types
of adjacent matrices as input. In our settings, ADJ indicates
the normalized adjacent matrix Ā. RW indicates the adjacent
matrix constructed by random walk [Grover and Leskovec,
2016]. PPR indicates the adjacent matrix constructed by
Personalized PageRank algorithm [Hassani and Khasahmadi,
2020]. As illustrated in Fig. 3, these clustering results on
two benchmark datasets have clearly verified that AGC-DRR
could achieve robust performance when adopting different
adjacent matrices.

4.5 t-SNE Visualization
As illustrated in Fig. 4, we present the clustering results of
different clustering methods on ACM and DBLP by t-SNE
algorithm [Van der Maaten and Hinton, 2008]. From these
figures, we observe that the proposed AGC-DRR can clearly
reveal the intrinsic clustering structure among samples.

5 Conclusion
In this paper, we design a novel attributed graph clustering
with dual redundancy reduction (AGC-DRR), which can re-
duce the redundant information in both input and latent fea-
ture spaces. In the proposed method, the learning processes
of structure augmented graph and clustering are united into a
common min-max optimization framework. In this way, the
learned network is robust against perturbation while discrim-
inative against inter-class samples. The proposed AGC-DRR
has been evaluated on four benchmark datasets. Extensive
experimental results verify that our proposed method outper-
forms state-of-the-art counterparts.
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