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Abstract

Multiple kernel clustering aims to seek an appropriate com-
bination of base kernels to mine inherent non-linear informa-
tion for optimal clustering. Late fusion algorithms generate
base partitions independently and integrate them in the fol-
lowing clustering procedure, improving the overall efficiency.
However, the separate base partition generation leads to inad-
equate negotiation with the clustering procedure and a great
loss of beneficial information in corresponding kernel ma-
trices, which negatively affects the clustering performance.
To address this issue, we propose a novel algorithm, termed
as Fusion Multiple Kernel k-means (FMKKM), which uni-
fies base partition learning and late fusion clustering into
one single objective function, and adopts early fusion tech-
nique to capture more sufficient information in kernel matri-
ces. Specifically, the early fusion helps base partitions keep
more beneficial kernel details, and the base partitions learn-
ing further guides the generation of consensus partition in
the late fusion stage, while the late fusion provides positive
feedback on two former procedures. The close collaboration
of three procedures results in a promising performance im-
provement. Subsequently, an alternate optimization method
with promising convergence is developed to solve the resul-
tant optimization problem. Comprehensive experimental re-
sults demonstrate that our proposed algorithm achieves state-
of-the-art performance on multiple public datasets, validating
its effectiveness. The code of this work is publicly available
at https://github.com/ethan-yizhang/Fusion-Multiple-Kernel-
K-means.

Introduction
Multiple kernel clustering (MKC) aims to extract comple-
mentary information from multiple pre-specified kernels and
then categorize the data with close patterns or structures
into the same cluster (Zhao, Kwok, and Zhang 2009; Kloft,
Rückert, and Bartlett 2010; Kloft et al. 2011; Yu et al. 2011;
Huang, Chuang, and Chen 2011; Gönen and Alpaydın 2011;
Zhou et al. 2015; Han et al. 2016; Wang et al. 2017b; Zhou
et al. 2021a; Liu et al. 2021a). Due to the ability to min-
ing inherent non-linear information, MKC has been inten-
sively researched and commonly applied to various applica-
tions (Liu et al. 2016; Li et al. 2017; Liu et al. 2017; Bhadra,
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Kaski, and Rousu 2017; Liu et al. 2019; Zhou et al. 2019,
2021b).

For example, Patel and Zhou et al. take the advantage of
MKC and extend it with the properties of subspace (Patel
and Vidal 2014; Zhou et al. 2019). Ren et al. improve the
clustering performance of MKC by preserving the global
and local graph structures (Ren and Sun 2020). Liu et al.
assumes that an optimal kernel is in the neighborhood of
the mixed kernel to reinforce the presentation of the op-
timal kernel (Liu et al. 2017). Also, multiple kernel k-
means (MKKM) is a popular method, which has been inten-
sively studied and widely applied. It simultaneously learns
the clustering partition matrix and the base kernel coeffi-
cient in a single objective function (Huang, Chuang, and
Chen 2011). Many variants of MKKM has been proposed to
improve the clustering performance (Gönen and Margolin
2014; Du et al. 2015; Liu et al. 2016; Wang et al. 2017a;
Bang, Yu, and Wu 2018; Liu et al. 2019; Yao et al. 2020;
Liu, Zhu, and Liu 2020). For example, the research (Gönen
and Margolin 2014) improves the representation ability of
MKKM through generating locally adaptive mixed kernels
so as to mine the sample features in depth. By considering
the relationship among kernels, Liu et al. propose MKKM
with matrix-induced regularization to reduce the redundancy
while enhancing the diversity of selected kernels (Liu et al.
2016).

Late fusion algorithm, as a typical MKC approach, sub-
stantially reduces the computational cost while achieves en-
couraging clustering performance by maximally aligning
weighted base partitions with the consensus one (Wang et al.
2019; Liu et al. 2018, 2020; Zhang et al. 2020; Kang et al.
2020; Liu et al. 2021b). For an instance, Liu et al. develop
a late fusion method to handle incomplete data by jointly
optimizing the imputation and clustering tasks (Liu et al.
2020). Liu et al. propose to directly learn the clustering la-
bels and avoid the two-stage learning procedure, further im-
proving the computational efficiency and clustering perfor-
mance (Liu et al. 2021b) .

Although clustering algorithm with late fusion manner
shows the above advantages, we observe that base parti-
tion generation by eigenvalue decomposition is regarded as
a pre-process, which may cause a significant loss of the cru-
cial information in corresponding kernel matrices. Further-
more, since it is performed separately from late fusion clus-



tering, the two independent procedures cannot guide each
other and lack necessary negotiation. Thus, the initial qual-
ity of base partitions becomes the bottleneck, limiting the
clustering performance.

To address the above issues, this paper proposes a novel
MKC algorithm, termed as Fusion Multiple Kernel k-means
(FMKKM). It unifies the base partition learning and late fu-
sion clustering into a single optimization objective function
and incorporates the early fusion technique to capture more
sufficient information for the downstream clustering. Specif-
ically, these three procedures, the base partitions learning,
the early fusion, and the late fusion, are unified into one
optimization objective. This enables them to negotiate with
each other so as to achieve optimal clustering performance.
Afterwards a six-step alternating optimization method with
guaranteed convergence is developed to effectively solve the
resultant optimization problem.

The main contributions of this paper are summarized as
follows,

• This paper, for the first time, integrates the base par-
tition learning and late fusion clustering into a unified
optimization objective. In this way, they can positively
guide each other and avoid the bottleneck caused by not
”ideal” initial partitions, leading to better clustering per-
formance.

• This paper, for the first time, proposes a novel overall
process fusion manner, which unifies the early fusion and
the late fusion. This allows the algorithm to bring their
respective advantages and strengths into play, thus fully
excavating the beneficial information in kernel matrices.

• We introduce a curvilinear search algorithm and develop
it to solve the difficult optimization problem with orthog-
onality constraint. Then we carefully design a six-step al-
ternate optimization method and discuss its convergence,
computational complexity, and extension.

• Comprehensive experiments are conducted on multiple
benchmark datasets to evaluate the effectiveness of our
proposed algorithm. As demonstrated, FMKKM dramat-
ically outperforms state-of-the-art competitors, validat-
ing its effectiveness.

Related Work
In this section, we provide a brief review of MKKM and
LFMVC, and then introduce the motivation of our work.

Multiple Kernel K-means
Given X ∈ Rn×d, k-means clustering aims to group X into
k clusters, where n and d is the number of samples and fea-
ture dimensions. Let Z ∈ {0, 1}n×k be a clustering assign-
ment matrix, where Ziq = 1 if xi belongs to the q-th cluster.
Its objective can be presented as

min
Z, c

1

n

∑n

i=1

∑k

q=1
Ziq‖xi − cq‖2 s.t. Z1 = 1. (1)

The samples can be mapped into a reproducing kernel
Hilbert space (RKHS) (Scholkopf and Smola 2001) by ker-
nel tricks and then taken as the input of k-means to deal

with non-linear features. Note that, the kernel matrices can
be constructed as Ki,j = φ>i φj with a mapping function
ϕ(·). Based on this, the objective can be rewritten as

min
H

Tr
(
K
(
I−HH>

))
s.t. H>H = I, (2)

where H ∈ Rn×k is termed clustering partition matrix.
Due to the fact that the choice of kernel matrix severely

influences the performance of kernel k-means, we usually
assume the optimal kernel Kγ can be expressed as a com-
bination of base kernel matrices. The objective can be ex-
tended as follows,

min
H,γ

Tr(Kγ(I−HH>)) s.t. H>H = I,γ ∈ ∇1, (3)

where ∇1 = {γ ∈ Rm |
∑m
p=1 γp = 1, γp ≥ 0, ∀p},

Kγ =
∑m
p=1 γ

2
pKp and m represents the number of data

views. In literature (Huang, Chuang, and Chen 2011), γ and
H can be jointly solved by an alternate optimization. Then a
standard k-means algorithm is applied to the obtained parti-
tion matrix H for the final cluster assignments.

Late Fusion Multi-view Clustering
Late fusion algorithm substantially reduces the computa-
tional cost and achieves encouraging clustering performance
by maximally aligning weighted base partitions with the
consensus partition (Wang et al. 2019). Given n samples in k
clusters with m kernels, its objective function can be math-
ematically presented as follows,

maxH∗, W, β Tr(H∗>
∑m

p=1
βpHpWp) + λTr(H∗>Ĥ)

s.t. H∗>H∗ = Ik,W
>
p Wp = Ik, ∀p, β ∈ ∇2,

(4)

where ∇2 = {β ∈ Rm |
∑m
p=1 β

2
p = 1, βp ≥ 0, ∀p}, Hp

denotes the p-th pre-calculated base partitions from multiple
kernels, and Wp is the p-th linear transformation matrix.
The latter Tr(H∗>Ĥ) is a regularization term on the con-
sensus partition to prevent H∗ from being too far away from
prior average partition Ĥ, and λ is a trade-off parameter.
According to the literature (Wang et al. 2019), a three-step
alternate optimization is developed to solve Eq. (4) and the
computational complexity of LFMVC isO(nk2+mk3) per
iteration. After obtaining the consensus partition matrix H,
a standard k-means algorithm is applied to obtain the final
cluster assignments.

In existing late fusion clustering algorithms (Wang et al.
2019; Liu et al. 2020, 2021b), base partitions used for clus-
tering are pre-calculated and remain unchanged. They are
independent of the final learning of consensus partition and
calculated separately without negotiation. As a result, unsat-
isfying base partitions would directly lead to poor cluster-
ing results. In other words, the pre-calculated base partitions
limit the performance of the whole clustering algorithm and
become a performance bottleneck. In the following part of
the paper, we develop FMKKM to deal with this problem.



Fusion Multiple Kernel K-means
In this section, we first give the objective formulation of our
proposed FMKKM and then develop a six-step alternate op-
timization algorithm. Next, the convergence, computational
complexity, and extension of our proposed FMKKM are dis-
cussed.

Proposed Formulation
Eq.(4), a widely used formula for reducing the computa-
tional complexity of MKC, is to align the weighted base par-
titions with the consensus partition instead of fusing the base
kernel matrices. It performs fusion in the partition layer, so it
is called late fusion multi-view clustering, which has shown
its feasibility and efficiency in many fields. Despite achiev-
ing encouraging clustering performance, we observe that it
has two disadvantages: 1) The base partition generation is
a pre-process, while late fusion clustering is separately per-
formed and lacks negotiation, resulting in that the cluster-
ing performance is directly determined by the initial quality
of base partitions. 2) Base partitions can be regarded as the
low-dimensional data features extracted by eigenvalue de-
composition of the corresponding kernel matrices, thus this
single feature extraction process will cause the omission of
some crucial information in kernels.

To overcome these shortcomings, we propose a novel fu-
sion multiple kernel k-means algorithm, which unifies the
base partitions learning and late fusion clustering into a
single optimization objective function and incorporates the
early fusion of kernel matrices to capture more sufficient and
beneficial information. Then we derive the objective formu-
lation of our proposed FMKKM as follows.

minH∗, {Hp}mp=1, {Wp}mp=1, α, β, γ
Tr
(
Kα

(
I−H∗H∗>

))
+ λ1

∑m

p=1
β2
pTr

(
Kp

(
I−HpH

>
p

))
− λ2Tr

(
H∗>Bγ

)
s.t. H∗>H∗ = I,H>p Hp = I,W>

p Wp = I,∀p,
α,β ∈ ∇1,γ ∈ ∇2,

(5)

where Bγ =
∑m
p=1 γpHpWp, H∗ ∈ Rn×k and Hp ∈

Rn×k denote the consensus partition and the p-th base par-
tition, Wp ∈ Rk×k is the p-th transformation matrix, and
n,m, k represent the numbers of samples, kernels, and clus-
ters respectively. As seen from Eq.(5), our proposed algo-
rithm integrates the early fusion and the late fusion, forming
a new paradigm for further clustering. In this way, their re-
spective advantages and strengths can be brought into play.
Moreover, the base partitions are learnable rather than fixed
in LFMVC. As a result, the fusion of the partition layer and
the base partition learning can negotiate with each other to
obtain the optimal clustering performance.

Alternate Optimization
There are six variables in Eq.(5) to optimize, therefore,
jointly optimizing them is difficult. In order to solve the
optimization, we design a six-step alternate algorithm with
proved convergence. In each step, one variable is optimized
while the others are fixed.

Optimization H∗ . Fixing {Hp}mp=1, {Wp}mp=1, α, β
and γ, the optimization in Eq. (5) w.r.t H∗ is transformed to

minH∗ − Tr(H∗>KαH∗ + λ2H
∗>Bγ)

s.t. H∗>H∗ = I,
(6)

where Bγ =
∑m
p=1 γpHpWp. Due to the orthogonality

constraint of H∗, we develop a curvilinear search algo-
rithm to optimize H∗ according to the literature (Wen and
Yin 2013). We first define F(H∗) := −Tr(H∗>KαH∗ +
λ2H

∗>Bγ) and rewrite the optimization in Eq.(6) as

minH∗ F(H∗) s.t. H∗>H∗ = I. (7)

Since H∗>H∗ is a symmetric matrix, the Lagrangian
multiplier Λ corresponding to H∗>H∗ = I is also sym-
metric. The Lagrangian function of Eq.(7) is

L(H∗,Λ) = F(H∗)− 1

2
Tr
(
Λ
(
H∗>H∗ − I

))
. (8)

Suppose that H∗ is a local minimizer of Eq.(7), then H∗

satisfies DH∗L(H∗,Λ) = L(H∗,Λ) = G − H∗G>H∗

and H∗>H∗ = I with the associated Lagrangian multiplier
Λ = G>H∗, where G is the derivative of F(H∗) w.r.t H∗.

We define A := GH∗> − H∗G> and the differential
operator ∇L := AH∗ = L(H∗,Λ) = G − H∗G>H∗.
Note that∇L = 0 if and only if A = 0.

To preserve the orthogonality constraint, the next iteration
of H∗ can be calculated as follows.

Ĥ∗(τ) = H∗ − τA

(
H∗ + Ĥ∗(τ)

2

)
, (9)

where τ is a step size. From Eq.(9), we can easily obtain

Ĥ∗(τ) =
(
I +

τ

2
A
)−1 (

I− τ

2
A
)

H∗. (10)

Theorem 1 The Ĥ∗(τ) computed by Eq.(10) satisfies
Ĥ∗(τ)>Ĥ∗(τ) = H∗>H∗ = I for any skew-symmetric A
and τ ∈ R.

Because the matrix inversion in Eq.(10) seems computa-
tionally expensive, it is not a good option to directly com-
pute. We suppose U = [G,H∗] and V = [H∗,G], then
A = GH∗>−H∗G> can be rewritten as A = UV>. After
that, we apply the SMW formula to I + τ

2A = I + τ
2UV>

and obtain
(
I + τ

2A
)−1

= I − τ
2U

(
I + τ

2V>U
)−1

V>.
Finally we have the expression of next iteration of H∗ with
cheaper cost as follows.

Ĥ∗(τ) = H∗ − τU
(
I +

τ

2
V>U

)−1
V>H∗. (11)

Note that, τ can be selected by a one-dimensional line
search strategy, such as Armijo-Wolfe’s rule. Obtaining
V>U = A> = (GH∗> − H∗G>)> needs 2nk2 flops
and the inversion takesO(k3) due to turning inverting Rn×n
to inverting R2k×2k. The final computational complexity of
solving H∗ is 4nk2 + O(k3) per iteration. The curvilinear
search algorithm procedure to solve Eq.(6) is outlined in Al-
gorithm 1.



Algorithm 1: Solving H with orthogonality constraint via
curvilinear search algorithm

1: Input: H, F(H) and ε.
2: Output: H.
3: Initialize t = 0 and G = DF(H).
4: repeat
5: U← [G,H] and V← [H,G].
6: Select τt according to the Armijo-Wolfe’s rule.
7: Ht+1 ← H− τU

(
I + τ

2V>U
)−1

V>H.
8: t← t+ 1.
9: until ||∇Lt|| ≤ ε

Optimization {Hp}mp=1 Fixing H∗, {Wp}mp=1, α, β
and γ, the optimization in Eq. (5) w.r.t each Hp can be
rewritten as,

minHp −Tr(λ1β2
pH
>
p KpHp + λ2γpH

∗>HpWp)

s.t. H>p Hp = I.
(12)

Like H∗, the optimization of Hp can be solved by Algo-
rithm 1 with computational complexity 4nk2 + O(k3) per
iteration.

Optimization {Wp}mp=1 Fixing H∗, {Hp}mp=1, α, β
and γ, the optimization in Eq. (5) w.r.t each Wp is reduced
to

maxWp Tr(W>
p H>p H∗) s.t. W>

p Wp = I. (13)

Eq. (13) can be efficiently solved by SVD with computa-
tional complexity O(nk2).
Optimization α Fixing H∗, {Hp}mp=1, {Wp}mp=1, β
and γ, the optimization in Eq. (5) is equivalent to the op-
timization problem as follows

minα

m∑
p=1

α2
pδp s.t. α ∈ ∇1, (14)

where δp = Tr(Kp

(
I−H∗H∗>

)
) and the computational

complexity of calculating δp isO(n2k). This could be easily
solved as follows

αp =
1
δp

/∑m
q=1

1
δp
. (15)

Optimization β Fixing H∗, {Hp}mp=1, {Wp}mp=1, α
and γ, it could be solved just like optimizing α and the op-
timal solution is

βp =
1
ζp

/∑m
q=1

1
ζp
, (16)

where ζp = Tr(Kp

(
I−HpH

>
p

)
).

Optimization γ Fixing H∗, {Hp}mp=1, {Wp}mp=1, α
and β, the optimization in Eq. (5) is equivalently rewritten
as follows

maxγ

m∑
p=1

γpθp s.t. γ ∈ ∇2, (17)

Algorithm 2: Fusion Multiple Kernel K-means

1: Input: {Hp}mp=1, k, λ1, λ2 and ε.
2: Initialize α = 1/m, β = 1/m, γ = 1/

√
m, H∗,

{Hp}mp=1, {Wp}mp=1 and t = 0.
3: repeat
4: Update H∗ with fixed {Hp}mp=1, {Wp}mp=1, α, β

and γ via Algorithm 1.
5: Update {Hp}mp=1 with fixed H∗, {Wp}mp=1, α, β

and γ via Algorithm 1.
6: Update {Wp}mp=1 with fixed H∗, {Hp}mp=1, α, β

and γ by optimizing Eq. (13).
7: Update α with fixed H∗, {Hp}mp=1, {Wp}mp=1, β

and γ by solving Eq. (15).
8: Update β with fixed H∗, {Hp}mp=1, {Wp}mp=1, α

and γ by solving Eq. (16).
9: Update γ with fixed H∗, {Hp}mp=1, {Wp}mp=1, α

and β by solving Eq. (18).
10: t← t+ 1.
11: until (obj(t−1) − obj(t))/obj(t) ≤ ε

where θp = Tr(H∗>HpWp). We can easily obtain the op-
timal closed-form solution as follows

γp = θp

/√∑m
q=1 θ

2
p
. (18)

The whole algorithm optimizing Eq. (5) is outlined in Al-
gorithm 2, where obj(t) indicates the objective value at the
t-th iteration.

Discussion and Extension
Convergence Note that the objective value in Eq.(2) is
monotonically decreased when one variable is optimized
with the others fixed and the objective function is lower-
bounded. Therefore, the whole optimization algorithm is
proved to converge to a local optimum, as validated by our
experimental results in Figure (1).

Computational Complexity As seen from the optimiza-
tion procedure in Algorithm 2, the computational complex-
ity of our proposed FMKKM at each iteration isO(mn2k+
tmnk2 + tmk3), where n, m and k represent the numbers
of samples, kernels, and clusters, respectively, and t denotes
the maximum number of iterations in the optimization of H∗

and {Hp}mp=1.

Extension Firstly, our proposed FMKKM adopts the sim-
plest MKKM to guide the learning of H∗ and {Hp}mp=1.
Therefore, other similarity-based methods can be used to ex-
tend this work to further improve clustering performance.
Secondly, our proposed FMKKM integrates two fusion
stages together, forming a novel overall process fusion
paradigm, thus they can give full play to their respective ad-
vantages and make up for their shortcomings. This idea can
be easily extended to various fields, not only MKC, but also
other machine learning tasks. Moreover, the novel overall
process fusion paradigm achieves great success on cluster-
ing performance that may inspire more research on fusion
algorithms.



Table 1: Datasets used in our experiments.

Dataset #Samples #Kernels #Clusters
Texas 187 2 5
Wisconsin 265 2 5
Football 248 9 20
BBCSport 544 2 5
Willow 911 3 7
Flower17 1360 7 17
Flower102 8189 4 102
ALOI-100 10800 4 100
Reuters 18758 5 6

Experiment and Analysis
In this section, we carry out a comprehensive experiment on
multiple benchmark datasets in order to evaluate the effec-
tiveness of our proposed FMKKM. The clustering perfor-
mance, evolution of the objective value and the learned H∗,
parameter sensitivity, weight coefficients, and running time
are carefully analyzed.

Experiment Settings
Multiple public datasets are adopted to evaluate the per-
formance of our proposed FMKKM, including Texas1,
Wisconsin1, Football2, BBCSport3, Willow4, Flower175,
Flower1025, ALOI-1006, Reuters7. The detail information
of datasets is summarized in Table 1. It can be observed that
the numbers of samples vary from hundreds to nearly 20
thousand, the numbers of kernels and clusters also show con-
siderable variation, which enables the experiment to better
evaluate the performance of different clustering algorithms.

For all datasets, the true number of clusters k is prespec-
ified and set as the input of algorithms. We apply three
widely used criteria to evaluate the clustering performance,
i.e. clustering accuracy (ACC), normalized mutual informa-
tion (NMI), and rand index (RI). For all algorithms, we re-
peat each experiment 50 times with random initialization to
reduce the randomness effect caused by k-means, and report
their means and standard variations. All experiments are per-
formed on a PC with Intel Core i9-10900X CPU and 64G
RAM.

Along with our proposed FMKKM, we run another ten
algorithms chosen from recent MKC literature for compari-
son. Specifically, Avg-KKM (baseline) obtains the consen-
sus kernel by uniformly combines base kernels and then per-
forms kernel k-means on it. We also select five classical
algorithms, including MKKM (Huang, Chuang, and Chen
2011), LMKKM (Gönen and Margolin 2014), MKKM-
MR (Liu et al. 2016), LKAM (Li et al. 2016) and ONKC
(Liu et al. 2017). Additionally, we choose four most recent
methods, i.e. LFMVC (Wang et al. 2019), SMKKM (Liu,
Zhu, and Liu 2020), NKSS (Zhou et al. 2019) and SPMKC

1https://linqs-data.soe.ucsc.edu/public/lbc/
2http://mlg.ucd.ie/aggregation/
3http://mlg.ucd.ie/datasets/
4http://www.di.ens.fr/willow/research/stillactions/
5https://www.robots.ox.ac.uk/∼vgg/data/flowers/
6http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView/
7https://kdd.ics.uci.edu/databases/reuters21578/

(Ren and Sun 2020). Their source codes are publicly avail-
able and we directly use them without revision.

Experiment Results
Overall Clustering Performance Table 2 presents the
ACC, NMI and RI comparison of the above algorithms.
From this table, we have the following observations:

• Late fusion MVC (Wang et al. 2019), as a recent rep-
resentation, does significantly improve most early-fusion
MKC algorithm in term of clustering performance and
complexity, yet its aforementioned shortcomings lead
to poor performance in many situations. For example,
other algorithms exceeds LFMVC by 4.9%, 2.9%, 0.8%,
3.3%, 0.2% and 0.3% on Texas, Wisconsin, Willow,
Flower102, ALOI-100, Reuters datasets in term of ACC.
Meanwhile, our proposed FMKKM dramatically im-
proves the clustering performance and exceeds LFMVC
by 12.6%, 2.7%, 7.2%, 8.7%, 2.0%, 1.0%, 4.6%, 4.0%
and 0.6% on the nine datasets in term of ACC.

• Besides, the recently proposed SMKKM (Liu, Zhu, and
Liu 2020) extends the widely used supervised kernel
alignment criterion and achieves comparable or bet-
ter clustering performance, however its improvement
of performance is marginal. Meanwhile, our proposed
FMKKM outperforms SMKKM significantly. For exam-
ple, FMKKM exceeds it by 20%, 12.2%, 7.1%, 21.7%,
5.9%, 3.4%, 1.6%, 7.3% and 0.8% on nine benchmark
datasets in term of ACC.

• In recent works, NKSS (Zhou et al. 2019) adopts
the neighbour kernel and subspace technique, yet
SPMKC (Ren and Sun 2020) attempts preserving the
global and local graph structures. Although they have
achieved encouraging clustering performance, our pro-
posed FMKKM outperforms these recent work. Specifi-
cally, FMKKM exceeds NKSS and SPMKC by 18.2%,
31.8%, 5.4%, 21.2%, 2.8%, 19.4%, 1.3%, 7.0% and
19.6%, 25.7%, 19.7%, 34%, 1.9%, 32.9%, 17.4%,
20.2%, 19.5% in term of ACC on all datasets, respec-
tively.

In summary, FMKKM shows superior clustering perfor-
mance on all datasets compared with other algorithms, val-
idating the effectiveness of the proposed overall process fu-
sion manner. We expect that its novel paradigm and supe-
rior performance will attract intensive research and common
application in community. In addition, we point out that ’-
’ in Table 2 indicates that the results are unavailable due to
out-of-memory error, non convergence or too long execution
time, which is caused by cubic computational and memory
complexity.

Convergence and Evolution As discussed above, our
proposed FMKKM is theoretically guaranteed to converge
into a local optimum. To show this point in practice, we plot
the objective value curves of FMKKM w.r.t. the number of
iterations on Wisconsin and ALOI-100 datasets, as shown
in Figure 1. It can be seen that the objective value mono-
tonically decreases and the algorithm quickly converges.



Table 2: Aggregated clustering accuracy (ACC), normalized mutual information (NMI) and rand index (RI) comparison
(mean±std) of different clustering algorithms on all benchmark datasets. Best results are marked in bold.

Algrithmn Texas Football Wisconsin BBCSport Willow Flower17 Flower102 ALOI-100 Reuters

ACC

Avg-KKM 46.7 ± 1.2 72.4 ± 2.4 52.9 ± 0.4 63.5 ± 1.5 22.2 ± 0.3 51.2 ± 2.2 26.6 ± 0.6 64.8 ± 1.3 45.5 ± 1.5
MKKM 58.9 ± 1.4 74.3 ± 1.8 54.1 ± 2.8 63.8 ± 1.6 22.2 ± 0.4 44.7 ± 1.4 22.5 ± 0.5 6.4 ± 0.1 45.4 ± 1.5
LMKKM 51.0 ± 1.7 52.0 ± 2.2 46.0 ± 0.7 64.0 ± 1.3 22.5 ± 0.2 37.7 ± 2.1 - - -
ONKC 54.9 ± 0.5 77.7 ± 3.3 56.5 ± 0.3 63.6 ± 1.4 22.5 ± 0.5 54.1 ± 1.6 39.5 ± 1.0 68.0 ± 1.2 41.8 ± 1.2
MKKM-MR 54.4 ± 0.4 77.3 ± 2.2 55.8 ± 0.6 63.6 ± 1.4 22.7 ± 0.4 58.3 ± 1.3 40.2 ± 0.9 68.3 ± 1.0 46.2 ± 1.4
LKAM 51.8 ± 0.2 76.8 ± 2.3 56.7 ± 0.2 73.7 ± 0.5 27.0 ± 0.2 49.8 ± 1.2 41.2 ± 0.9 64.2 ± 0.7 45.5 ± 0.0
LFMVC 54.0 ± 0.9 78.4 ± 2.6 53.6 ± 0.5 76.6 ± 2.8 26.2 ± 0.5 61.3 ± 1.0 38.4 ± 1.1 68.1 ± 1.0 45.7 ± 1.6
RMKKM 46.4 ± 1.0 72.4 ± 1.9 53.7 ± 0.6 63.6 ± 1.5 22.2 ± 0.4 52.9 ± 2.1 30.6 ± 1.0 - 45.5 ± 1.5
SMKKM 46.6 ± 1.2 68.9 ± 2.6 53.7 ± 0.6 63.6 ± 1.4 22.3 ± 0.6 58.9 ± 1.0 41.4 ± 1.2 64.8 ± 1.3 45.5 ± 0.7
NKSS 48.4 ± 0.7 49.3 ± 2.0 55.4 ± 0.1 64.1 ± 1.2 25.4 ± 0.4 42.9 ± 1.0 41.7 ± 0.8 65.1 ± 1.2 -
SPMKC 47.0 ± 0.6 55.4 ± 2.5 41.1 ± 1.0 51.3 ± 1.9 26.3 ± 0.2 29.4 ± 0.9 25.6 ± 0.4 51.9 ± 1.5 26.8 ± 0.0
FMKKM 66.6 ± 1.0 81.1 ± 2.7 60.8 ± 1.1 85.3 ± 0.3 28.2 ± 0.4 62.3 ± 1.2 43.0 ± 1.4 72.1 ± 1.3 46.3 ± 2.4

NMI

Avg-KKM 30.2 ± 0.6 77.9 ± 1.4 34.2 ± 0.8 43.7 ± 1.2 5.7 ± 0.2 49.7 ± 1.6 45.9 ± 0.4 77.6 ± 0.6 27.4 ± 0.4
MKKM 11.6 ± 0.6 79.1 ± 0.8 28.2 ± 2.3 44.0 ± 1.3 5.7 ± 0.1 44.5 ± 1.2 42.7 ± 0.2 22.3 ± 0.2 27.3 ± 0.4
LMKKM 13.5 ± 1.4 59.6 ± 1.5 15.1 ± 1.5 44.0 ± 0.9 5.7 ± 0.2 38.9 ± 1.5 - - -
ONKC 31.6 ± 1.0 80.4 ± 1.8 31.9 ± 0.2 43.9 ± 0.7 6.0 ± 0.4 52.7 ± 0.7 56.1 ± 0.4 79.7 ± 0.5 22.3 ± 0.4
MKKM-MR 31.4 ± 0.5 79.9 ± 1.5 32.7 ± 0.3 43.7 ± 1.1 6.2 ± 0.3 56.6 ± 0.7 56.7 ± 0.4 80.7 ± 0.4 25.3 ± 0.7
LKAM 29.2 ± 0.5 79.6 ± 1.3 36.2 ± 0.1 65.3 ± 1.1 8.3 ± 0.3 49.6 ± 0.5 56.8 ± 0.4 77.8 ± 0.3 29.9 ± 0.0
LFMVC 28.4 ± 0.8 83.0 ± 2.3 32.4 ± 0.6 59.1 ± 2.8 7.7 ± 0.5 59.1 ± 0.5 54.9 ± 0.5 79.5 ± 0.4 27.4 ± 0.4
RMKKM 30.4 ± 0.3 77.7 ± 1.0 31.1 ± 0.6 43.8 ± 1.2 5.7 ± 0.2 51.9 ± 0.9 48.8 ± 0.5 - 27.4 ± 0.4
SMKKM 27.4 ± 1.4 75.8 ± 1.6 31.2 ± 0.6 44.0 ± 0.9 5.8 ± 0.4 57.2 ± 0.7 58.2 ± 0.5 77.6 ± 0.6 27.7 ± 0.2
NKSS 19.7 ± 0.5 57.7 ± 1.1 32.8 ± 0.1 51.1 ± 0.4 5.8 ± 0.3 46.0 ± 0.5 58.6 ± 0.2 78.4 ± 0.5 -
SPMKC 10.2 ± 1.0 57.8 ± 1.1 4.0 ± 0.8 29.9 ± 3.1 7.1 ± 0.1 27.5 ± 0.4 42.3 ± 0.2 69.4 ± 1.0 0.6 ± 0.0
FMKKM 32.9 ± 2.1 85.0 ± 1.8 39.5 ± 0.5 69.2 ± 0.5 8.2 ± 0.2 59.7 ± 0.9 58.3 ± 0.5 82.2 ± 0.5 27.6 ± 0.4

RI

Avg-KKM 20.4 ± 0.6 59.8 ± 2.6 28.1 ± 0.7 39.6 ± 2.0 3.1 ± 0.1 32.4 ± 1.8 15.1 ± 0.5 50.9 ± 1.5 21.8 ± 1.4
MKKM 14.1 ± 0.6 61.0 ± 1.3 24.8 ± 2.2 40.0 ± 2.1 3.2 ± 0.1 27.6 ± 1.3 12.0 ± 0.4 1.9 ± 0.1 21.8 ± 1.4
LMKKM 11.8 ± 1.0 31.9 ± 2.6 7.1 ± 0.5 40.4 ± 1.4 3.2 ± 0.2 20.7 ± 1.5 - - -
ONKC 24.0 ± 0.9 65.1 ± 3.3 26.9 ± 0.4 39.9 ± 1.4 3.2 ± 0.2 35.4 ± 0.9 25.0 ± 0.6 55.2 ± 1.3 20.3 ± 0.3
MKKM-MR 23.5 ± 0.7 64.0 ± 2.3 26.6 ± 0.4 39.7 ± 1.9 3.4 ± 0.2 40.2 ± 0.9 25.6 ± 0.7 56.0 ± 1.5 23.1 ± 0.6
LKAM 21.6 ± 0.2 63.6 ± 2.0 31.8 ± 0.3 62.2 ± 1.2 4.6 ± 0.2 31.2 ± 0.9 27.2 ± 0.7 52.8 ± 0.7 24.1 ± 0.0
LFMVC 22.1 ± 1.0 66.8 ± 3.7 27.9 ± 0.8 57.5 ± 3.8 4.5 ± 0.3 44.3 ± 0.7 25.4 ± 1.1 53.8 ± 1.0 22.1 ± 1.6
RMKKM 20.7 ± 0.5 59.4 ± 1.9 23.6 ± 0.7 39.8 ± 2.0 3.1 ± 0.1 34.8 ± 1.3 18.1 ± 0.8 - 21.8 ± 1.4
SMKKM 18.1 ± 1.4 56.1 ± 2.9 23.6 ± 0.7 40.1 ± 1.6 3.2 ± 0.2 40.9 ± 1.1 27.5 ± 0.9 51.0 ± 1.5 22.1 ± 0.8
NKSS 17.0 ± 0.6 30.2 ± 1.5 29.3 ± 0.1 44.2 ± 0.6 3.4 ± 0.3 24.1 ± 0.8 27.5 ± 0.5 54.3 ± 1.3 -
SPMKC 7.8 ± 2.0 26.7 ± 1.7 -0.8 ± 0.6 21.8 ± 3.5 4.6 ± 0.1 12.4 ± 0.4 14.5 ± 0.4 32.2 ± 2.4 0.1 ± 0.0
FMKKM 35.6 ± 2.3 69.8 ± 3.3 36.9 ± 1.3 68.9 ± 0.5 5.3 ± 0.2 45.4 ± 1.2 29.6 ± 1.0 56.3 ± 1.6 22.5 ± 1.8
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Figure 1: The objective values of FMKKM varies with iterations (left) and the evolution of the learned consensus partition
matrix H∗ (right).

In fact, the convergence is achieved in less than 15 itera-
tions on most cases. In addition, to show the evolution of
the learned consensus partition of FMKKM, we take H∗ at

each iteration to calculate clustering performance, and plot
them in Figure 1. As observed, the clustering performance of
FMKKM usually increases and then remains stable with tiny
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Figure 2: Running time comparison of different algorithms on nine benchmark datasets. Node that, in order to observe more
clearly, we scale the values and let execution time of Avg-KKM be reference.

fluctuation in most cases, which sufficiently demonstrates
the effectiveness of our algorithm. These results consider-
ably show the effectiveness and necessity of the learning
procedure.

Weight Coefficients Analysis We further study the weight
coefficients learned by compared algorithms on all datasets.
The results are plotted in Figure 3. As seen, the ker-
nel weights learned by many algorithms such as ONKC,
MKKM-MiR, LKAM and especially NKSS are highly
sparse on Wisconsin and ALOI-100 datasets. This sparsity
would make algorithm focus on a certain preferred kernel
matrix and may cause insufficient fusion, leading to poor
performance. However, the final kernel weights γ learned by
our proposed FMKKM are non-sparse on all datasets, which
promotes the fusion procedure. Meanwhile, α and β, the co-
efficient for serving the clustering, pay more attention to a
certain kernel to complementally supplement the deficien-
cies of the learning of γ.

Wisconsin

MKKM
ONKC

MKKM-M
R

LKAM
LFMVC

RMKKM
SMKKM

NKSS

FMKKM-

FMKKM-

FMKKM-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
e
rn

e
l 
W

e
ig

h
ts

ALOI-100

MKKM
ONKC

MKKM-M
R

LKAM
LFMVC

RMKKM
SMKKM

NKSS

FMKKM-

FMKKM-

FMKKM-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
e
rn

e
l 
W

e
ig

h
ts

Figure 3: The kernel weights learned by various compared
algorithms.

Parameter Sensitivity Analysis As can be seen in Eq. (5),
FMKKM introduces the regularization parameter λ1 and λ2
to trade off different fusion stages. We conduct experiments
to study the sensitivity and effect of these parameters on the
clustering performance on all datasets. Figure 4 presents the
ACC of FMKKM on Wisconsin and ALOI-100 datasets by
varying λ1 in 2[1:9] and λ2 in 2[3:10], respectively. In addi-
tion, the best results of recently proposed SMKKM, NKSS
and SPMKC are also provided as baselines for reference.
From the observation, FMKKM achieves stable clustering
performance across a wide range of λ1 and λ2 and there is
an internal connection between λ1 and λ2.

Figure 4: The sensitivity of FMKKM with the variation of
λ1 and λ2 in term of ACC.

Running Time Comparison Finally, we report the execu-
tion time of all compared algorithms on all datasets, as plot-
ted in Figure 2. As observed, our proposed FMKKM does
not greatly increase the computational cost despite signifi-
cant improvement of the clustering performance. Moreover,
as discussed above, since the computational complexity is
O(mn2k + tmnk2 + tmk3) at each iteration, our proposed
FMKKM may have advantages on dealing with large-scale
tasks rather than those algorithms with high computational
complexity of O(n3).

Conclusion
In this paper, we propose a novel FMKKM algorithm, which
simultaneously carries out the early fusion of base ker-
nels and the late fusion of base partitions, and integrate the
base partition learning into the clustering procedure. In this
way, FMKKM enhances the mutual negotiation and posi-
tive guidance among the base partitions learning, the clus-
tering optimization of the early fusion stage and late fu-
sion stage. In order to solve the resultant optimization prob-
lem, we carefully develop a six-step alternate algorithm with
guaranteed convergence. Comprehensive experimental re-
sults show the leading performance and the effectiveness of
our proposed FMKKM.
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