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Fast Parameter-free Multi-view Subspace Clustering
with Consensus Anchor Guidance

Siwei Wang, Xinwang Liu, Xinzhong Zhu, Pei Zhang, Yi Zhang, Feng Gao and En Zhu

Abstract—Multi-view subspace clustering has attracted in-
tensive attention to effectively fuse multi-view information by
exploring appropriate graph structures. Although existing works
have made impressive progress in clustering performance, most of
them suffer from the cubic time complexity which could prevent
them from being efficiently applied into large-scale applications.
To improve the efficiency, anchor sampling mechanism has
been proposed to select vital landmarks to represent the whole
data. However, existing anchor selecting usually follows the
heuristic sampling strategy, e.g. k-means or uniform sampling.
As a result, the procedures of anchor selecting and subsequent
subspace graph construction are separated from each other
which may adversely affect clustering performance. Moreover,
the involved hyper-parameters further limit the application of
traditional algorithms. To address these issues, we propose a novel
subspace clustering method termed Fast Parameter-free Multi-
view Subspace Clustering with Consensus Anchor Guidance
(FPMVS-CAG). Firstly, we jointly conduct anchor selection
and subspace graph construction into a unified optimization
formulation. By this way, the two processes can be negotiated
with each other to promote clustering quality. Moreover, our
proposed FPMVS-CAG is proved to have linear time complexity
with respect to the sample number. In addition, FPMVS-CAG can
automatically learn an optimal anchor subspace graph without
any extra hyper-parameters. Extensive experimental results on
various benchmark datasets demonstrate the effectiveness and
efficiency of the proposed method against the existing state-
of-the-art multi-view subspace clustering competitors. These
merits make FPMVS-CAG more suitable for large-scale subspace
clustering. The code of FPMVS-CAG is publicly available at
https://github.com/wangsiwei2010/FPMVS-CAG.

Index Terms—large-scale clustering, multiple subspace cluster-
ing, multiple view clustering

I. INTRODUCTION

CLustering plays a vital role among unsupervised image
processing, data mining and machine learning commu-

nity. With the rapid growth of unlabelled collected data, many
clustering algorithms have been proposed to automatically
discover the intrinsic structure and group similar items into
the same clusters, e.g. k-means, spectral clustering and kernel
k-means clustering [1]–[9]. Among the several commonly-
adopted clustering approaches, subspace clustering aims to
explore topological pairwise relations of data with graph struc-
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ture. As an important extension, self-expressive subspace clus-
tering assumes that the data samples can be represented by lin-
ear combinations of themselves and therefore can be separated
by independent subspaces. After obtaining the symmetrical
self-representation matrix, the traditional spectral clustering
is then adopted to get the final clustering result. However,
real data are described in various forms or collected from
different sources. For example, texts with the same semantic
meanings can be written in different languages (English,
Chinese and French so on). To better collect complementary
information among the provided multiple information, multi-
view subspace clustering (MVSC) is proposed in recent years
and has attracted massive attention. Most MVSC methods
adopt multi-view subspace regularization stereotype to capture
the inter-view relationships for multi-view clustering [10]–
[18].

Although these aforementioned MVSC approaches are able
to solve multi-view clustering from various aspects, most of
the existing algorithms suffer from the high time complexity
(normally O(n3) or even higher) limiting their applications
in real-world applications. The high time complexity consists
of two major parts: (i) the graph construction stage. Normally,
building the self-representation graph matrix needs O(n4) (see
section II-A for details).(ii) spectral clustering stage. After
obtaining the similarity matrix, the clustering stage needs
O(n3) for Singular Value Decomposition (SVD). With the
rapid growth of data, it is difficult to efficiently run the existing
approaches with limited computational sources.

Recently, to improve the efficiency of subspace algorithms,
anchor graph strategy has been proposed to select landmarks
to represent the entire data items [8], [12], [19]–[23]. Then the
size of individual view graph has been reduced from n×n to
n× l while the l denotes the number of landmarks. However,
existing anchor graph work adopts the heuristic sampling
strategy, e.g. k-means or uniform sampling. Therefore, the
anchor selecting and the followed subspace graph construction
are separated from each other which may adversely affect
clustering performance. Moreover, existing work contains
massive involved hyper-parameters which further limits their
application on large-scale modern data.

To further improve the effectiveness and efficiency, we
propose a novel method termed Fast Parameter-free Multi-
view Subspace Clustering with Consensus Anchor Guidance
(FPMVS-CAG) in this paper. The framework of our proposed
method is shown in Fig. 1. Different from existing large-scale
work, we firstly jointly conduct anchor selection and the fol-
lowed subspace graph construction into a unified optimization.
The two processes can negotiate with each other to promote
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clustering quality. To solve the resultant optimization problem,
we design a four-step alternate optimization algorithm with
proved convergence. By the virtue of it, FPMVS-CAG is
proved to have linear time complexity respecting to the sam-
ple number. More specially, FPMVS-CAG can automatically
learn an optimal low-rank anchor subspace graph without
additional hyper-parameters as previous methods do. The two
factors contribute to FPMVS-CAG more suitable for large-
scale subspace clustering. Extensive experimental results on
various benchmark datasets demonstrate the effectiveness and
efficiency of the proposed method when compared to the
existing state-of-the-art multi-view clustering competitors.

In general, the main contributions of this paper are threefold:

1) Different from existing anchor sampling strategy, we
firstly combine anchor learning and the graph construc-
tion into a unified framework. The two counterparts
contribute to each other and are jointly optimized so
that the learned consensus anchor graph can better utilize
multi-view information.

2) FPMVS-CAG naturally constructs the graph satisfying
low-rank property, which does not involve any hyperpa-
rameter as previous methods do. More importantly, our
proposes method with linear time complexity is proved
to be more efficient and effective to large-scale subspace
clustering problems.

3) We design a four-step alternating optimization algorithm
to solve the resultant optimization problem with the-
oretically proved convergence. Extensive experimental
results demonstrate the superiority and efficiency of our
proposed algorithm. especially on large-scale multi-view
datasets (even more than 100000 samples).

The rest of this paper is organized as follows. Section II
outlines the related work of multi-view subspace clustering.
Section III presents the proposed formula and the four-step
alternate algorithms. Further, we also provide analysis of the
convergence and the computational complexity of our two
proposed algorithm. Section IV shows the experiment results
with evaluation. Section V concludes the paper.

II. RELATED WORK

In this section, we introduce existing work most related
to our study in this paper, including subspace clustering
algorithm, multi-view clustering and large-scale multi-view
clustering. Table I lists main notations used throughout the
paper.

A. Self-expressive Subspace clustering

Given a single-view data matrix X ∈ Rd×n with n samples
and d dimension, subspace clustering is classified two stages:
graph construction and spectral embedding stages.

Graph Construction Stage: Firstly, we build subspace graph
by minimizing the self-expressive reconstruction error as fol-
low,

min
S
‖X−XS‖2F + Ω(S), s.t. S ≥ 0,S>1 = 1. (1)

TABLE I: Main notations used throughout the paper.

Notation Meaning

n The number of samples
v The number of views
k The number of clusters
l The number of selected anchors

α ∈ Rv×1 The view coefficient vector
di The dimension for the i-th view
h

∑v
i=1 di

X ∈ Rd×n The single-view data matrix
Xi ∈ Rdi×n The data matrix for the i-th view
Wi ∈ Rd×k The projection matrix for the i-th view

Si The self-expressive representation matrix for the i-th view
A ∈ Rk×k The consensus anchors matrix
H ∈ Rn×k The spectral embedding matrix
Z ∈ Rk×n The consensus anchor graph

where Ω denotes for the various forms of regularization terms
on S. For example, `1 norm ensures sparsity and `∗ (nuclear-
norm) seeks for the low-rank property. The S ≥ 0 and S>1 =
1 ensure the non-negativity and normalization of the obtained
self-expressive representation matrix S.

Suppose the given regularization norm is Frobenius norm,
then Eq. (1) is introduced with the balanced hyperparameter
λ as follows,

min
S
‖X−XS‖2F + λ‖S‖2F, s.t. S ≥ 0,S>1 = 1. (2)

Eq. (2) can be further divided into n subproblems,

min
1

2
S>:,jMS:,j + f>S:,j , s.t. S>:,j1 = 1, S ≥ 0, (3)

where M = 2(X>X + λI), f> = −2(X>X)
>
:,j . Since M is

absolutely positive definite matrix, each subproblem in Eq.
(3) is a quadratic programming (QP) problem and can be
solved in O(n3) to get the optimal value. Therefore, the
first graph construction stage in Eq. (2) needs O(n4). Some
recent methods accelerate the time complexity into O(n3) per
iteration [3], [15], [24]–[29].

Spectral Embedding Stage: After obtaining the self-
expressive representation matrix S, the symmetric similarity
matrix are regraded as S+S>

2 . Then spectral clustering is then
applied to get the spectral embedding H ∈ Rn×k,

max
H

Tr(H>
S + S>

2
H), s.t. H ∈ Rn×k,H>H = Ik, (4)

where H is regarded as the spectral embedding of data
matrix and is input to k-means algorithm to get the final
clustering result. To solve Eq. (4), we need to do singular
value decomposition (SVD) on S which needs O(n3).

B. Multi-view subspace clustering

As an extension of traditional single-view subspace cluster-
ing, multi-view subspace clustering assumes that data usually
lie in underlying low-dimension subspaces rather than dis-
tribute uniformly in the entire space.

It is natural to expand Eq. (1) into multi-view setting.
Mathematically, given the multi-view data {Xi}vi=1 ∈ Rdi×n
with di dimension feature in the i-th view, n the number
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(a) Traditional Methods (b) Our Method

Fig. 1: The framework comparison between traditional methods (left) and ours (right). Traditional methods separately select
anchors by random sampling or k-means in each view, and then conduct the graph construction. On the contrary, our method
adaptively learns the consensus low-dimension anchors with multi-view information and simultaneously construct the anchor
graph. These two parts are jointly optimized and boosted each other.

of samples, the fundamental equation of multi-view subspace
clustering can be expressed as follows,

min
S

v∑
i=1

‖Xi −XiSi‖2F︸ ︷︷ ︸
Graph Construction

+ Ω(S , Si)︸ ︷︷ ︸
Fusion

,

s.t. diag(Si) = 0, diag(S) = 0,S>i 1 = 1,

(5)

where Ω refers to the consensus regularization term that could
co-train a global graph among different views. After obtaining
the fused global graph S, the final clustering result can be
reached by performing spectral clustering on S.

Many multi-view subspace clustering methods are proposed
along with this framework due to their ability to capture the
global structure. However, Gao et al. [30] think it is unreason-
able to align multi-view graphs into a unified one directly since
the magnitude of Si is different. They incorporate spectral
clustering into their objective by using graphs of all views
to obtain a uniform partition matrix. Considering that learning
representation independently cannot ensure the complementary
information, Cao et al. [31] propose to induce Hilbert-Schmidt
Independence Criterion (HSIC) to explore diverse subspace
representations. Zhang et al. [9], [24] reconstruct the data
points in a latent space which could make subspace repre-
sentation more accurate and robust. Since most of the multi-
view subspace methods only explore diversity or consistency
information, Luo et al. [32] propose to learn the subspace
representation with consistency and specificity jointly. Some
methods aim at finding a proper constraint for the subspace,
such as low-rank or sparse or both [33]. Another theme in
this field is fusing multiple information in partition level [25],
[27], [34]–[38].

The approaches mentioned above have promising results
in terms of clustering performance. However, regardless of
the level of fusion, multi-view subspace clustering cannot
avoid performing graph construction, which requires a time

complexity of O(n3) and a space complexity of at least
O(n2). This dramatically limits the scalability of the multi-
view subspace clustering approach.

C. Large-scale multi-view clustering

Anchor graph has been widely regarded as an effective
strategy to deal with large-scale datasets in multi-view spectral
clustering [8] and multi-view subspace clustering [22], etc. The
main proposal of anchor graph is to select/sample a relative
small proportion of representative landmarks and explore the
relationship between themselves and the original samples.
Therefore, the size of anchor graph has been reduced from
S ∈ Rn×n to Z ∈ Rl×n while the l denotes the number
of landmarks. It is to see that we use Z>Z as the input
in traditional spectral clustering stage. As demonstrated by
former anchor subspace methods, the anchor graph can help
reduce both storage and computational time while providing
comparable clustering performance.

Recently, as a representative of multi-view anchor graph
approaches, Kang et al. [22] propose a method termed as
Large-scale Multi-view Subspace Clustering in Linear Time
(LMVSC). Firstly, they perform k-means in each view to
obtain the view-specific anchors and then construct the re-
spective anchor graphs between anchors and all samples on
each view. Moreover, Li et al. propose an alternate anchor
sampling strategy to build individual anchor graphs and then
combine them into the consensus graph [12].

Although these methods have fulfilled anchor-based scalable
multi-view clustering form several aspects, existing work
can be improved with the following considerations: (i) The
sampling procedure is isolated from the multi-view clustering
process and the anchors selection is performed independently
in each view without information connection with other views.
(ii) Existing work contains massive involved hyper-parameters
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which further limits their application on large-scale modern
data. In the next section, we propose a novel method termed
as Fast Parameter-free Multi-view Subspace Clustering with
Consensus Anchor Guidance (FPMVS-CAG) to solve this
problem.

III. METHODOLOGY

In this section, we firstly describe the motivation and
the formulation of our proposed FPMVS-CAG method with
proved convergence. Then, we show the respective optimiza-
tion process and analyze the difference of the proposed method
with its competitors. Moreover, the time complexity and space
complexity are introduced to illustrate the time and space
efficiency of our method.

A. Motivation and Proposed Formula

Researchers utilize all the original data points to represent
each point in the self-representation strategy, which is widely
used in multi-view subspace clustering. Although a global
relationship is well explored, the optimization time and storage
cost related to the global graph restrict the scalability of multi-
view subspace clustering. Besides, depicting one point with all
samples is unnecessary and redundant. Therefore, we adopt the
anchor strategy [8], [22] to select a small set of data points
called anchor points or landmarks to reconstruct the underlying
subspace and capture the manifold structure.

It can be concluded from the existing multi-view anchor-
based subspace methods that they adopt the heuristic anchor
sampling strategy, e.g. k-means or uniform sampling. There-
fore, the anchor selecting and latter subspace graph construc-
tion are separated from each other which may adversely affect
clustering performance.

Different from traditional strategy, we decide to learn an-
chors automatically not based on sampling. Moreover, multi-
view clustering holds the assumption that there shares a
consensus latent data distribution. Therefore, it is reasonable
that the anchors should be consistent in latent space. To
accomplish this, we define the respective projection matrix
{Wi}vi=1 aiming at the consensus anchor guidance. With the
consensus latent anchor A, we define the optimization goal as
follows,

min
α,Wi,A,Z

v∑
i=1

αi
2‖Xi −WiAZ‖2F,

s.t. α>1 = 1,W>
i Wi = Ik,A

>A = Ik,Z ≥ 0,Z>1 = 1.
(6)

In Eq. (6), Xi ∈ Rdi×n is the i-th view of original data
where di is the dimension of corresponding view, n is the
number of samples. A ∈ Rk×k is the unified anchor matrix
with k selected anchors and dimension.

Although Eq. (6) seems simple, we summarize the advan-
tages of the newly-proposed model as follows:
• Naturally induced low-rank property: Since the whole

similarity matrix can be formed as S = Z>Z, it is easy
to obtain that rank(S) = rank(Z>Z) ≤ rank(Z) = k.

Therefore comparing to existing nuclear-norm constraint,
our model naturally output the low-rank similarity matrix.

• Different from existing anchor sampling strategy, the
anchor selection and the graph construction are combined
into a unified framework. The two counterparts contribute
to each other and are jointly optimized together so that
the learned consensus anchors can better capture multi-
view information.

• Parameter-free: our model does not involve any hy-
perparameters as previous methods do, which is more
suitable for practical large-scale clustering problems.

• Adaptive weighted: comparing to fixed equally-weighted
coefficients in existing multi-view anchor graph methods,
FPMVS-CAG can adaptively learn the view coefficients
due to their contributions to the consensus graph, which
is more reasonable in applications

Once the anchor graph Z is constructed, the Z>Z is used
as the input for the second spectral embedding stage. Unlike
traditional solutions, we can quickly and easily obtain the
spectral embedding H according to the following Theorem.
The spectral embedding H is obtained as the eigenvectors of
Z>Z.

Theorem 1. The right singular vectors of Z is the same as
the eigenvectors of Z>Z.

Proof. Suppose the singular value decomposition (SVD) of Z
is Z = UΣV>, we can easily see that Z>Z = VΣ>ΣV>.
Therefore, the right singular vector of Z is the same as the
eigenvectors of Z>Z. This completes the proof.

According to the Theorem 1, we can conclude that the
spectral embedding H can be obtained by performing SVD
on the anchor graph Z which only needs O(nk2) instead of
existing O(n3).

B. Optimization

The optimization problem in Eq. (6) is not jointly convex
when all variables are considered simultaneously. Therefore,
we propose an alternating optimization algorithm to optimize
each variable with the other variables been fixed. After that,
we provide the total framework of optimization algorithm and
time/space complexity analysis.

1) Update Wi: When A, Z and αi are fixed, the objective
function w.r.t. Wi can be formulated as

min
Wi

v∑
i=1

αi
2 ‖Xi −WiAZ‖2F , s.t. W>

i Wi = Ik. (7)

Since each Wi is separated from each other in terms of
corresponding views, thus we can transform Eq. (7) into the
following equivalent problem by expanding the Frobenius
norm by trace and removing the items that are not related
to Wi.

max
Wi

Tr(W>
i Bi), s.t. W>

i Wi = Ik, (8)

where Bi = XiZ
>A>. Supposing the Singular value decom-

position (SVD) result of Bi is UΣV>, the optimal Wi can
be easily obtained by calculating UV> according to [39].
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Calculating each Bi needs O(dink+dik
2). Hence for the v

sub-problems, calculating B needs O(hnk+ hk2). Moreover,
solving Eq. (8) needs O(k2

∑v
i=1 di) = O(k2h). Therefore,

the total time complexity of updating W stage is O(hnk +
hk2).

2) Update A: With Wi, Z and αi being fixed, the opti-
mization for A can be transformed into solving the following
problem

min
A

v∑
i=1

αi
2‖Xi −WiAZ‖2F, s.t. A>A = Ik. (9)

Similar to the optimization of Wi, the optimization of A
in Eq. (9) equals to the following form

max
A

Tr(A>C), s.t. A>A = Ik, (10)

where C =
∑v
i=1 αi

2W>
i XiZ

>. Similarly, the optimal so-
lution of updating variable A can be attained the multiply
of left singular matrix and the right singular matrix of C.
Similar to B, to obtain the consensus anchor matrix A needs
O(hnk + k3).

3) Update Z: Fixing other variables Wi, A and αi, the
optimization problem for updating variable Z can be rewritten
as,

min
Z

v∑
i=1

αi
2‖Xi −WiAZ‖2F,

s.t. Z ≥ 0, Z>1 = 1.

(11)

The above optimization problem of Z can be easily formu-
lated as the following Quadratic Programming (QP) problem
as the former described,

min
1

2
Z>:,jGZ:,j + f>Z:,j ,

s.t. Z>:,j1 = 1, Z ≥ 0,
(12)

where G = 2(
∑v
i=1 α

2
i )I, f> = −2

∑v
i=1 X>i[:,j]WiA.

Optimization can be performed by solving the QP problem for
each row of Z. Because the each row of Z is a k-dimensional
vector, in this sub-problem the time complexity is O(nk3).

4) Update αi: Fixing the irrelevant variables, we can obtain
the optimization problem for updating αi.

min
αi

v∑
i=1

α2
i r

2
i , s.t. α>1 = 1,α ≥ 0, (13)

where ri = ‖Xi −WiAZ‖F. According to Cauchy-Schwarz
inequality, the optimal αi can be directly obtained by

αi =
1
ri∑v
i=1

1
ri

. (14)

We summarize our whole procedures of the above optimiza-
tion are listed in the following Algorithm 1. After obtaining
the spectral embedding H, we perform k-means algorithm on
H to get the final clustering result labels.

C. Complexity Analysis

Firstly, we will analyze the time complexity during the total
optimization. Then a comparison is conducted between the
compared method in terms of main space complexity.

Algorithm 1 FPMVS-CAG
Input: Input v views dataset {Xi}vi=1 and the number of
cluster k.
Initialize: Initialize A, Z, W. Initialize αi with 1

v .
1: while not converged do
2: Update Wi by solving the problem in Eq. (8).
3: Update A by solving the problem in Eq. (10).
4: Update Z by solving the problem in Eq. (12).
5: Update αi by calculating Eq. (14).
6: end while
7: Obtain H by performing SVD on Z.
8: Output: Perform k-means on H to achieve the final

clustering result.

1) Time complexity: The computational complexity is com-
posed of the cost of optimization of each variable. When
updating Wi, it costs O(dih

2) to perform SVD on Bi and
O(dihk

2) to execute matrix multiplication to get the optimal
Wi. Similar to updating Wi, updating A needs O(mh2) and
O(hk3) for SVD and matrix multiplication. When solving the
QP problem of updating Z, it costs O(nk3) for all columns.
The time cost of calculating αi is only O(1). Therefore, the to-
tal time cost of the optimization process isO(hk2+hk3+nk3).
Consequently, the computational complexity of our proposed
optimization algorithm is linear complexity O(n) respecting
to the number of samples.

After the optimization, we perform SVD on Z to obtain its
left singular matrix U and get the final clustering result by
k-means. In the post-process, the computational complexity is
O(nk2), which is also a linear complexity. Consequently, we
achieve a linear-time algorithm in both optimization process
and post-process. This enables our algorithm to efficiently
handle large-scale clustering tasks. In contrast, as shown in
Table II, most of the subspace-based multi-view clustering
methods hold a O(n3) time complexity in the processes
mentioned above.

2) Space complexity: In this paper, the major memory costs
of our method are matrices Wi ∈ Rdi×k, A ∈ Rk×k and
Z ∈ Rk×n. Thus the space complexity of our FPMVS-CAG
is kn + (h + k)k, where h =

∑v
i=1 di. In our algorithm,

k � n. Therefore, the space complexity of FPMVS-CAG is
O(n). We counted the major memory cost of the compared
algorithms in the following Table II. It is easy to observe
that the space complexity of most state-of-the-art algorithms is
O(n2), such as MVSC, AMGL, MLRSSC, FMR, etc. LMVSC
method also performs O(n) space complexity, but they have
to construct a graph for each view, which will cost more than
our consensus graph. The high time and space complexities
limit the scalability of many multi-view subspace clustering,
making them only applicable to relatively small datasets. We
show in Table II the largest dataset reported in the comparison
algorithm, which can reflect the efficiency of the algorithm to
some extent.
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TABLE II: Complexity Analysis on existing multi-view clus-
tering methods and Ours

Method Memory Cost Time Complexity Max Reported

RMKM (n+ h)k O(n) 30,475
MVSC 2vn2 + nk O(n3) 1,230
AMGL vn2 + nk O(n3) 12,613

MLRSSC (v + 1)n2 O(n3) 2,000
FMR n2 + nm O(n3) 10,158

PMSC 2vn2 + (v + 1)nk O(n3) 2,386
MLES vn2 O(n4) 544

LMVSC vk(n+ h) O(n) 30,000
Ours kn+ (h+ k)k O(n) 101,499

D. Convergence

Theorem 2. The proposed algorithm 1 is proved to to be
converged.

Proof. We first define the objective function of the proposed
algorithm 1 as follows,

J (α, {Wi}mi=1 ,A,Z) = min
α,Wi,A,Z

v∑
i=1

αi
2‖Xi −WiAZ‖2F.

(15)

As can be seen form Eq. (15), the whole function is not
jointly convex when all variables are considered simultane-
ously. Instead, we propose an alternate optimization algorithm
to optimize each variable with the other three variables been
fixed. Let we define α(t),

{
W

(t)
i

}m
i=1

,A(t),Z(t) be the solu-
tion at the t-iteration.

i)Optimizing {Wi}mi=1 with fixed A,Z and α. Given
α(t),A(t),Z(t) , the optimization in Eq. (8) respect to
{Wi}mi=1 can be analytically obtained. The detailed derivation
can be found in the manuscript. Suppose the obtained optimal
solution be

{
W

(t+1)
i

}m
i=1

. We have

J
(
αt,
{

W
(t)
i

}m
i=1

,At,Zt
)
≥ J

(
αt,
{

W
(t+1)
i

}m
i=1

,At,Zt
)
.

(16)
ii)Optimizing A with fixed {Wi}mi=1 ,Z and α. Given

α(t),
{

W
(t+1)
i

}m
i=1

,Z(t) , the optimization in Eq. (9) respect
to A can be analytically obtained. Suppose the obtained
optimal solution be A(t+1). We have

J
(
αt,
{

W
(t+1)
i

}m
i=1

,At,Zt
)
≥ J

(
αt,
{

W
(t+1)
i

}m
i=1

,A(t+1),Zt
)
.

(17)
iii)Optimizing Z with fixed A, {Wi}mi=1 and α. Given

α(t),
{

W
(t+1)
i

}m
i=1

,A(t) , the optimization in Eq. (9) respect
to Z can be optimally solved with n quadprog programs.
Suppose the obtained optimal solution be Z(t+1). We have

J
(
αt,
{

W
(t+1)
i

}m
i=1

,A(t+1),Zt
)
≥ J

(
αt,
{

W
(t+1)
i

}m
i=1

,A(t+1),Z(t+1)
)
.

(18)
iv)Optimizing α with fixed A,Z and {Wi}mi=1. Given

Z(t+1),
{

W
(t+1)
i

}m
i=1

,A(t) , the optimization in Eq. (14) re-
spect to α can be analytically obtained. The detailed derivation

TABLE III: Large-scale Multi-view datasets used in our ex-
periments.

Dataset #Samples #View #Class #Feature

Caltech101-20 2386 6 20 48, 40, 254, 1984, 512, 928
CCV 6773 3 20 20, 20, 20

Caltech101-all 9144 5 102 48, 40, 254, 512, 928
SUNRGBD 10335 2 45 4096, 4096

NUSWIDEOBJ 30000 5 31 65, 226, 145, 74, 129
AwA 30475 6 50 2688, 2000, 252, 2000, 2000, 2000

MNIST 60000 3 10 342, 1024, 64
YoutubeFace sel 101499 5 31 64, 512, 64, 647, 838

can be found in the manuscript. Suppose the obtained optimal
solution be α(t+1). We have

J
(
αt,
{

W
(t+1)
i

}m
i=1

,A(t+1),Z(t+1
)
≥ J

(
α(t+1),

{
W

(t+1)
i

}m
i=1

,A(t+1),Z(t+1)
)
.

(19)
Together with Eq. (16), (17), (18) and (19), we have that

J
(
αt,
{

W
(t)
i

}m
i=1

,At,Zt
)
≥ J

(
α(t+1),

{
W

(t+1)
i

}m
i=1

,A(t+1),Z(t+1)
)
.

(20)
which indicates that the objective function of our algorithm

in Eq. (6) monotonically decreases with the increase of itera-
tions. Also, the objective function in Eq. (6) is lower bounded
by zero. As a result, the proposed algorithm can be verified to
converge to a local minimum. This completes the proof.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency
of the proposed FPMVS-CAG for eight widely used large-
scale multi-view datasets from the aspects of clustering per-
formance, computational efficiency and convergence.

A. Benchmark Datasets

The proposed algorithm is experimentally evaluated on eight
widely used multi-view benchmark data sets shown in Table
III. Caltech101-20 is a widely used subset of the image
collection Caltech101 [40] which contains 101 categories. In
Caltech101-20, there are 2386 instances in 20 categories. The
multiple features of Caltech101-20 are extracted by following
previous work [8]. Caltech101-all dataset has 9144 samples
and five views. CCV is a rich database of YouTube videos
containing 20 semantic categories. SUNRGBD [41] contains
10335 indoor scene images in 45 classes. NUSWIDEOBJ
[42] is an object image datasets, composed of 30,000 image
over 31 classes. The five views used in this paper are Color
Histogram, Color Moments, Color Correlation, Edge Distribu-
tion and wavelet texture. The animal dataset with attributes is
called AwA. It contains 50 kinds of animals depicted in six
features. YouTubeFace sel is a face video dataset obtained
from YouTube.

B. Compared Multi-view Clustering Algorithms and Experi-
mental Setting

The following state-of-the-art multi-view clustering meth-
ods are compared with our proposed algorithm in the experi-
ment.
• Multi-view Subspace Clustering (MVSC) [30]. In this

paper, an efficient multi-view subspace clustering method
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TABLE IV: The clustering performance (ACC, NMI, Purity, Fscore) of the compared multi-view clustering methods. The best
result is highlighted in boldface. Underlines mean the second best competitors and ’N/A’ means the out-of-memory failure.
N/A means the corresponding method suffers out-of-memory due to the size of the dataset.

MVSC PMSC MLES FMR mPAC MLRSSC AMGL SFMC RMKM BMVC LMVSC Ours
Dataset ACC

Caltech101-20 0.5080 0.5981 0.3495 0.3873 0.4983 0.3600 0.1876 0.5947 0.3345 0.1769 0.4304 0.6547
CCV N/A N/A N/A 0.1671 0.2311 0.1259 0.1102 0.1156 0.1044 0.1326 0.2014 0.2399

Caltech101-all N/A N/A N/A N/A 0.2031 0.1365 0.0359 0.1777 0.0875 0.2123 0.2005 0.3015
SUNRGBD N/A N/A N/A N/A 0.1906 0.1741 0.0643 0.1113 0.1836 0.1669 0.1858 0.2392

NUSWIDEOBJ N/A N/A N/A N/A N/A N/A N/A 0.1221 0.1193 0.1299 0.1583 0.1946
AwA N/A N/A N/A N/A N/A N/A N/A 0.0390 0.0656 0.0867 0.0770 0.0919

MNIST N/A N/A N/A N/A N/A N/A N/A N/A 0.8621 0.4595 0.9852 0.9884
YoutubeFace sel N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0897 0.1479 0.2414

NMI

Caltech101-20 0.5271 0.5244 0.3158 0.5276 0.5855 0.2008 0.1101 0.5641 0.0000 0.1708 0.5553 0.6326
CCV N/A N/A N/A 0.1326 0.1744 0.0471 0.0758 0.0346 0.0000 0.0763 0.1657 0.1760

Caltech101-all N/A N/A N/A N/A 0.3809 0.1066 0.0187 0.2613 0.0000 0.4246 0.4155 0.3549
SUNRGBD N/A N/A N/A N/A 0.1335 0.1108 0.0371 0.0202 0.2612 0.1954 0.2607 0.2418

NUSWIDEOBJ N/A N/A N/A N/A N/A N/A N/A 0.0095 0.0926 0.1290 0.1337 0.1351
AwA N/A N/A N/A N/A N/A N/A N/A 0.0032 0.0738 0.1195 0.0879 0.1083

MNIST N/A N/A N/A N/A N/A N/A N/A N/A 0.9209 0.3959 0.9576 0.9651
YoutubeFace sel N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0593 0.1327 0.2433

Purity

Caltech101-20 0.7125 0.6480 0.5268 0.7163 0.6622 0.4476 0.6313 0.7045 0.3345 0.4166 0.7125 0.7368
CCV N/A N/A N/A 0.2110 0.2917 0.1307 0.2021 0.1194 0.1044 0.1652 0.2396 0.2605

Caltech101-all N/A N/A N/A N/A 0.2914 0.1371 0.4311 0.2430 0.0875 0.4124 0.3975 0.3460
SUNRGBD N/A N/A N/A N/A 0.1992 0.1741 0.2411 0.1144 0.3771 0.3357 0.3818 0.3400

NUSWIDEOBJ N/A N/A N/A N/A N/A N/A N/A 0.1227 0.2062 0.2333 0.2488 0.2382
AwA N/A N/A N/A N/A N/A N/A N/A 0.0399 0.0849 0.1094 0.0957 0.0961

MNIST N/A N/A N/A N/A N/A N/A N/A N/A 0.8988 0.4766 0.9852 0.9884
YoutubeFace sel N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.2662 0.2816 0.3279

Fscore

Caltech101-20 0.4329 0.5474 0.2972 0.3521 0.4806 0.3069 0.4661 0.4303 0.2799 0.1197 0.3414 0.6905
CCV N/A N/A N/A 0.1018 0.1346 0.1095 0.1215 0.1085 0.1084 0.0826 0.1194 0.1419

Caltech101-all N/A N/A N/A N/A 0.1254 0.0815 0.3617 0.0462 0.0548 0.1854 0.1586 0.2326
SUNRGBD N/A N/A N/A N/A 0.1298 0.1453 0.1894 0.1215 0.1168 0.1019 0.1201 0.1597

NUSWIDEOBJ N/A N/A N/A N/A N/A N/A N/A 0.1140 0.0750 0.0881 0.0990 0.1372
AwA N/A N/A N/A N/A N/A N/A N/A 0.0457 0.0359 0.0472 0.0378 0.0640

MNIST N/A N/A N/A N/A N/A N/A N/A N/A 0.8728 0.3357 0.9704 0.9768
YoutubeFace sel N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0579 0.0849 0.1433

is proposed and the effectiveness of the algorithm is
verified.

• Partition Level Multiview Subspace Clustering
(PMSC) [34]. This work proposes a unified multi-view
subspace clustering model and verifies the effectiveness
of the algorithm.

• Multi-view Clustering in Latent Embedding Space
(MLES) [43]. The algorithm can simultaneously learn the
global structure and the clustering indicator matrix and
then cluster multi-view data in the potential embedding
space.

• Flexible Multi-View Representation Learning for Sub-
space Clustering (FMR) [44]. This work flexibly en-
codes complementary information from different views,
thus avoiding the use of partial information for data
reconstruction.

• Multiple Partitions Aligned Clustering (mPAC) [45].
This algorithm jointly learns basic partitions, weights and
consensus clustering in a unified framework.

• Multi-view Low-rank Sparse Subspace Clustering
(MLRSSC) [33]. This work learns subspace represen-
tations by constructing affinity matrices shared among
all views and solves the associated low-rank and sparse
constrained optimization problems.

• Parameter-free Auto-weighted Multiple Graph Learn-
ing (AMGL) [26]. This work proposes a framework that
automatically learns the optimal weights for each graph
and obtains globally optimal results.

• Multi-view clustering: a Scalable and Parameter-free
Bipartite Graph Fusion Method (SFMC) [12]. SFMC
provides an initialization-independent anchor selection
strategy to fulfill scalable multi-view graph clustering
algorithm.

• Multi-view k-means Clustering on Big Data (RMKM)
[46]. This work is a robust large-scale multi-view cluster-
ing method that integrates heterogeneous representations
of large-scale data.

• Binary Multi-view Clustering BMVC [47]. This paper
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proposes to concurrently learn the multi-view binary
representation and consensus clustering result to reduce
computational complexity and storage cost.

• Large-scale Multi-view Subspace Clustering in linear
time (LMVSC) [22]. The algorithm is designed to handle
large-scale data and has linear complexity.

For a fair comparison, we download the released code of
comparison algorithms from their original websites. Since all
methods need to utilize k-means to get the final clustering
results, we run 50 times k-means to eliminate the randomness
in k-means initialization for all compared methods. Then the
clustering performance is evaluated by the widely used met-
rics accuracy (ACC), normalized mutual information (NMI),
purity, and Fscore. By the way, the experimental environment
is implemented on a desktop computer with an Intel Core i7-
7820X CPU and 64GB RAM, MATLAB 2020b (64-bit).

C. Experiments Results

Table IV presents the clustering performance of ours and
eleven compared algorithms on eight benchmark datasets. The
best results are marked in bold and underlining indicates the
second best. Moreover, ’N/A’ means that the method encoun-
ters an out-of-memory error on the corresponding dataset
on our device. Based on the results, we have the following
observations:
• FPMVS-CAG shows clear advantages over other multi-

view clustering baselines. Especially in term of ACC, our
proposed algorithm outperforms than all of the compared
methods. Our method improves 5.66%, 0.89%, 8.92%,
4.86%, 3.63%, 0.52%, 0.32%, 9.35% over the second
best method on eight datasets, respectively. Moreover,
FPMVS-CAG also achieves comparable performance on
the other metrics.

• Compared with the traditional subspace-based multi-
view clustering algorithms (MVSC, PMSC, MLES,
FMR, mPAC, MLRSSC), the anchor subspace methods
(LMVSC and ours) are more suitable for large-scale
dataset and could achieve the best performance in most
cases, which illustrates the effectiveness of anchor graph.

• Compared with some methods that use bipartite graphs,
k-means, or binarization for large-scale multi-view clus-
tering (SFMC, RMKM, BMVC), our FPMVS-CAG also
shows better performance. As for LMVSC, which is also
an anchor graph based algorithm, our method outperforms
it by 22.43%, 3.85%, 10.10%, 5.34%, 3.63%, 1.49%,
0.32%, 9.35% on the eight datasets, respectively. This
proves the effectiveness of our strategy of learning anchor
from multiple views with the guidance of consensus
anchor graph.

In summary, the above experimental results have well
demonstrated the effectiveness of our proposed FPMVS-CAG
comparing to other state-of-the-art methods. We attribute the
superiority of proposed algorithm as two aspects: i) The anchor
selection and latter subspace graph construction are jointly
into a unified optimization. Then the two processes can be
negotiated with each other to promote clustering quality. ii) To
solve the resultant optimization problem, we design a four-step

alternate optimization algorithm with proved convergence. By
the virtue of property, FPMVS-CAG is proved to only have the
linear time complexity respecting to the sample number. More
specially, FPMVS-CAG can automatically learn an optimal
low-rank anchor subspace graph without additional hyper-
parameters as previous methods do. The two factors contribute
to FPMVS-CAG more suitable for large-scale subspace clus-
tering.

D. Running Time Comparison

To compare the computational efficiency of the proposed
algorithms, we record the running time of various algorithms
on these benchmark datasets and report them in Figure 2.
As can be seen, FPMVS-CAG has much shorter running
time on tested datasets comparing to the-state-of-art multi-
view methods (MVSC, PMSC, FMR, mPAC, MLRSSC),
demonstrating the computational efficiency of the proposed
method. As theoretically demonstrated, our algorithm’s time
complexity is proved to be linear to n. Although BMVC and
LMVSC have less running time, their heuristic and simple
procedures do not sufficiently utilize multi-view information,
leading to much poorer clustering performance.

In sum, both the theoretical and the experimental results
have well demonstrated the computational advantage of pro-
posed algorithm, making FPMVS-CAG efficient to handle
with multi-view clustering. FPMVS-CAG enjoys comparable
complexity with existing large-scale multi-view clustering
methods. Besides, the clustering performance has been signif-
icantly improved due to utilizing multi-view information and
determining consensus anchors.

E. Handling with large-scale datasets more than large-scale
samples

To further demonstrate the effectiveness and efficiency of
our proposed method, we evaluate the clustering performance
when facing with large-scale datasets. Specially, we com-
pare our algorithm with the widely-used large-scale multi-
view clustering algorithms on datasets with more 30000 sam-
ples (including NUSWIDEIBJ, AWA, MNIST and Youtube-
Face sel). The experimental results are shown in Table V.

It can be observed from our proposed FPMVS-CAG still
maintains excellent clustering performance on these large
datasets especially on the largest dataset YouTubeFace (more
than 100000 samples). These have well demonstrated the
superiority of our method in terms of scalablity and clustering
performance.

F. Qualified Study

To further illustrate the effectiveness of the obtained anchor
graph Z, we have also plotted the affinity graph obtained by
LMVSC and ours in Fig. 3. As can be seen, ours haves much
clearer clustering structure than LMVSC. These results clearly
demonstrate the effectiveness of our proposed algorithm for
large-scale clustering.
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Fig. 2: The relative running time of the compared algorithms on the benchmark datasets. The empty bar means the respective
method is out of memory on the dataset.

TABLE V: Comparison results for large-scale oriented algo-
rithms. N/A means the corresponding method suffers out-of-
memory due to the size of the dataset.

Dataset Metric SFMC RMKM BMVC LMVSC Ours

NUSWIDEOBJ

ACC 0.1221 0.1193 0.1299 0.1583 0.1946
NMI 0.0095 0.0926 0.1290 0.1337 0.1351

Purity 0.1227 0.2062 0.2333 0.2488 0.2382
Fscore 0.1140 0.0750 0.0881 0.0990 0.1372

AwA

ACC 0.0390 0.0656 0.0867 0.0770 0.0919
NMI 0.0032 0.0738 0.1195 0.0879 0.1083

Purity 0.0399 0.0849 0.1094 0.0957 0.0961
Fscore 0.0457 0.0359 0.0472 0.0378 0.0640

MNIST

ACC N/A 0.8621 0.4595 0.9852 0.9884
NMI N/A 0.9209 0.3959 0.9576 0.9651

Purity N/A 0.8988 0.4766 0.9852 0.9884
Fscore N/A 0.8728 0.3357 0.9704 0.9768

YoutubeFace sel

ACC N/A N/A 0.0897 0.1479 0.2414
NMI N/A N/A 0.0593 0.1327 0.2433

Purity N/A N/A 0.2662 0.2816 0.3279
Fscore N/A N/A 0.0579 0.0849 0.1433

(a) Caltech101-20

(b) MNIST

Fig. 3: The visualization of the complete graphs between
LMVSC and ours on dataset Caltech101-20 and MNIST.

G. The learned View Coefficients

As mentioned in the former section, our method adaptively
learns the view coefficients respecting to their contributions.
We plot the learned coefficients in testes benchmark datasets
in Fig 4. From the figure, we can conclude that our proposed
method jointly optimizes the view coefficients to connect with
comprehensive information while previous methods equally
treat each view. The self-adaptive weights seem more practical
and reasonable in application.

Learned View Coefficients

Caltech101-20 Caltech101-all SUNRGBD CCV AwA MNIST NUSWIDEOBJ YoutubeFace
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Fig. 4: The learned view coefficients on eight benchmark
datasets.

H. Convergence of the Proposed Algorithm

Our algorithm is theoretically guaranteed to converge to
a local minimum according to [48]. We also conduct ex-
periments to demonstrate the convergence of the proposed
algorithm. The examples of the evolution of the objective
value on the experimental results are shown in Figure 5. In
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the above experiments, we observe that the objective values of
our algorithm monotonically decrease at each iteration. These
results clearly verify our proposed algorithm’s convergence.

V. CONCLUSION

In this paper, we propose a novel method termed as Fast
Parameter-free Multi-view Subspace Clustering with Consen-
sus Anchor Guidance (FPMVS-CAG). Different from existing
large-scale work, we firstly jointly conduct anchor selection
and latter subspace graph construction into a unified optimiza-
tion. Then the two processes can be negotiated with each
other to promote clustering quality. To solve the resultant
optimization problem, we design a four-step alternate opti-
mization algorithm with proved convergence. By the virtue of
property, FPMVS-CAG is proved to only have the linear time
complexity respecting to the sample number. More specially,
FPMVS-CAG can automatically learn an optimal low-rank
anchor subspace graph without additional hyper-parameters as
previous methods do. The two factors contribute to FPMVS-
CAG more suitable for large-scale subspace clustering. In the
future, we will explore the the influence of various anchor
selection strategy on the clustering quality.
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