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Localized Incomplete Multiple Kernel k-means with
Matrix-induced Regularization

Jingyuan Xia, Miaomiao Li, Huiying Xu, Qing Liao, Xinzhong Zhu, Xinwang Liu, Senior Member, IEEE

Abstract—Localized incomplete multiple kernel k-means (LI-
MKKM) is recently put forward to boost the clustering accuracy
via optimally utilizing a quantity of pre-specified incomplete
base kernel matrices. Despite achieving significant achievement
in a variety of applications, we find out that LI-MKKM does
not sufficiently consider the diversity and the complementary of
the base kernels. This could make the imputation of incomplete
kernels less effective, and vice versa degrades on the subsequent
clustering. To tackle these problems, an improved LI-MKKM
termed as LI-MKKM-MR is proposed by incorporating a matrix-
induced regularization term to handle the correlation among base
kernels. The incorporated regularization term is beneficial to
decrease the probability of simultaneously selecting two similar
kernels and increase the probability of selecting two kernels
with moderate differences. After that, we establish a three-
step iterative algorithm to solve the corresponding optimization
objective and analyze its convergence. Moreover, we theoretically
show that the local kernel alignment is a special case of its
global one with normalizing each base kernel matrices. Based
on the above observation, the generalization error bound of the
proposed algorithm is derived to theoretically justify its effec-
tiveness. Finally, extensive experiments on several public datasets
have been conducted to evaluate the clustering performance of
the LI-MKKM-MR. As indicated, the experimental results have
demonstrated that our algorithm consistently outperforms the
state-of-the-art ones, verifying the superior performance of the
proposed algorithm.

Index Terms—multiple view learning, multiple kernel cluster-
ing, incomplete kernel learning

I. INTRODUCTION

MUltiple kernel clustering (MKC) [1–8] sufficiently inte-
grates a number of pre-calculated base kernel matrices

to group samples into clusters, where similar samples are in the
same cluster while dissimilar ones are partitioned into different
ones. MKC has attracted much attention of the data mining
researchers and has been widely studied in recent years [9–17].
The seminal work in [9] extends the multiple kernel learning
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from supervised learning to unsupervised learning, and pro-
poses a margin-based MKC algorithm. It jointly optimizes the
optimal kernel, the maximum margin hyperplane and the opti-
mal clustering labels. The widely used kernel k-means method
has been extended in [18] for clustering analysis, where an
optimal kernel is learned from multiple data sources. Similarly,
the work in [12] extends existing multiple kernel k-means
algorithm (MKKM) by designing a localized MKKM one in
order to well utilize the characteristics of each individual sam-
ple. To enhance the robustness of existing MKKM algorithms
to noisy data, [13] proposes a robust MKKM algorithm by
substituting the widely adopted squared error in existing k-
means with an `2,1-norm one, and simultaneously optimizes
the best combination of kernels. To increase the diversity
and decrease the redundancy of the selected base kernels, the
recent work in [14] extends existing MKKM algorithms by
designing a matrix-induced regularization term to sufficiently
explore the correlation among pre-specified base kernels. More
recently, an optimal neighborhood kernel clustering (ONKC)
algorithm is proposed in [19], where the representability of the
optimal kernel to learn is largely boosted and the negotiation
between kernel learning and clustering is also reinforced. The
aforementioned MKC algorithms have been applied into many
cases and reached a superior performance [20–23].

As observed, these MKC algorithms share a common as-
sumption: all the pre-specified base kernels are complete.
Nevertheless, in some real world applications, some views
of a sample are usually not collected due to various reasons
[24, 25]. To address this issue, the work in the literature
proposes to firstly impute the missing elements in base
kernel matrices with imputation methods and then performs
existing multiple kernel clustering on these imputed kernels.
Several commonly used filling methods include zero-filling,
mean value filling, k-nearest-neighbor filling, expectation-
maximization (EM) filling [26], as well as several recently
proposed to matrix imputation [27–30]. One disadvantage
existing in the aforementioned “two-stage” algorithms is that
the imputation is separated from the subsequent clustering.
As a result, this may not be conducive to mutual negotia-
tion between the imputation and clustering to reach the best
performance. To overcome the above issue, the more recent
literature [31–33] advocates to unify the learning procedure
of imputation and clustering into a common framework, with
the aim to learn an optimal imputation that best severe for the
clustering tasks.

Although demonstrating superior clustering results in sev-
eral practical applications, we find that these work does not
sufficiently consider the redundancy and diversity among pre-
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specified kernel matrices when performing incomplete mul-
tiple kernel clustering. This could lead to high redundancy
and low diversity among the selected kernels [14], making
the utilization ratio of these base kernel matrices insufficient
and conversely decreasing the accuracy of clustering tasks.
In our work, a localized incomplete multiple kernel k-means
with matrix-induced regularization (LI-MKKM-MR) is prop-
soed to address the above-mentioned issue. By incorporating
a matrix-induced regularization, LI-MKKM-MR is able to
avoid selecting two similar kernel matrices simultaneously
and increase the probability of selecting two kernel matrices
with large diversity, making the base kernels better utilized
for clustering. In addition, it inherits the advantage of LI-
MKKM which only requires that the similarity of each sample
to its top k-nearest neighbours be optimally aligned with the
corresponding patch of the whole ideal similarity. This is
helpful for LI-MKKM-MR to pay more attention on closer
pairwise sample similarities that shall be put together, and
prevents involving unreliable similarity evaluation for farther
sample pairs. Furthermore, a three-step iterative optimization
algorithm is designed to solve the corresponding optimization
objective and its convergence has also been analyzed. After
that, the generalization error bound of the clustering algorithm
is derived, which theoretically guarantees its effectiveness.
Comprehensive experiments on several public datasets have
been conducted to evaluate the clustering performance of the
proposed LI-MKKM-MR. As demonstrated, LI-MKKM-MR
significantly and consistently outperforms existing two-step-
based algorithms and the newly proposed algorithm [33]. Ex-
tensive experimental results have demonstrated the superiority
of involving the matrix-induced regularization.

To summarize, this work makes the following major contri-
butions.

• This is the first attempt to identify the kernel redundancy
probelm in incomplete multiple kernel clustering. We then
introduce a new algorithm to improve LI-MKKM by
integrating a matrix-induced regularization to select low-
redundant and high-diverse kernel matrices, and carefully
establish three-step iterative algorithm to solve the corre-
sponding optimization objective.

• We build the theoretical connection between global and
local kernel alignment criteria, then we further derive the
generalization error bound of the proposed LI-MKKM-
MR, which theoretically justifies its effectiveness.

• Comprehensive experiments on ten public datasets have
demonstrated that our LI-MKKM-MR achieves the state-
of-the-art performance compared with existing advanced
algorithms. This considerably verifies our identification
of the aforementioned issue and the effectiveness of our
solution.

Finally, we clarify the differences between LI-MKKM-
MR and several recently proposed related work [14, 32].
The differences between LI-MKKM [32] and LI-MKKM-MR
can be summarized from the following three aspects: i) LI-
MKKM [32] does not sufficiently consider the diversity and
the complementarity of these incomplete base kernels. This
could make the imputation of incomplete kernels less effective,

and incur the adverse effect on the subsequent clustering.
Differently, LI-MKKM-MR is proposed by incorporating a
matrix-induced regularization which is helpful to reduce the
probability of simultaneously selecting two similar kernels
and increase the probability of selecting two kernels with
moderate differences, making the base kernels better uti-
lized for clustering. ii) Compared with LI-MKKM [32], LI-
MKKM-MR provides the generalization error analysis which
measures the clustering performance of the learned clusters
in training procedure on unseen samples. This theoretically
justifies the effectiveness of the proposed LI-MKKM-MR. iii)
As observed from the experimental results in Section V, LI-
MKKM-MR significantly improves the clustering performance
of LI-MKKM [32] in various benchmark datasets, which well
validates our identification of the aforementioned issue in
LI-MKKM and the effectiveness of our solution. We then
summarize the differences between [14] and our work from
the following aspects: In [14], a matrix-induced regularization
is proposed to solve the kernel redundancy in multiple kernel
clustering. However, it cannot effectively solve multiple kernel
clustering with incomplete kernels. Differently, the proposed
LI-MKKM-MR makes the first attempt to identify the kernel
redundancy problem in incomplete multiple kernel clustering,
proposes an effective solution and conducts comprehensive
experiments to validate our identification of this issue and the
superiority of our algorithm.

II. RELATED WORK

In this part, we mainly introduce the methods of multiple
kernel k-means (MKKM) clustering, MKKM with incomplete
kernels (MKKM-IK) and its localized variant. Before intro-
ducing these algorithms, we present all notations which will
be used in the following in Table I.

Table I: Notations summary

{xi}ni=1 n training samples
k number of clusters
τ ratio of the nearest neighbors

γ = [γ1, · · · , γm]> kernel weights
κp(·, ·) the p-th kernel function
φp(·) feature mapping corresponding to κp(·, ·)
φγ(·) feature mapping corresponding to κγ(·, ·)
{Kp}mp=1 m base kernel matrices

ep observed sample indices of Kp

H partition matrix
K

(dd)
p sub-matrix of Kp for observed samples

U(i) ∈ {0, 1}n×round(n∗τ) neighborhood indication matrix of xi
M correlation matrix among m base kernels

Ĉ = [Ĉ1, · · · , Ĉk] the learned k centroids

A. Multiple kernel k-means (MKKM)

Let {xi}ni=1 ⊆ X be n training samples, and φp(·) :
x ∈ X 7→ Hp, x are mapped onto a reproducing kernel
Hilbert space Hp (1 ≤ p ≤ m) by the p-th feature. Each
sample in multiple kernel clustering is represented by φγ(x) =
[γ1φ

>
1 (x), · · · , γmφ>m(x)]>, where γ = [γ1, · · · , γm]> repre-

sents the weights of the m pre-specified base kernel functions
{κp(·, ·)}mp=1. These kernel weights will be adaptively adjusted
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during multiple kernel clustering. Under the aforementioned
definition of φγ(x), the corresponding kernel function can be
expressed as follows.

κγ(xi,xj) = φ>γ (xi)φγ(xj) =
∑m

p=1
γ2pκp(xi,xj). (1)

One can calculate a kernel matrix Kγ on training samples
{xi}ni=1 with the kernel function defined in Eq. (1). As a result,
the objective of MKKM with Kγ is formulated as

min H,γ Tr
(
Kγ(In −HH>)

)
s.t. H>H = Ik, γ>1m = 1, γp ≥ 0, ∀p,

(2)

where H ∈ Rn×k is a soft version of the cluster assignment
matrix, and Ik is a k×k identity matrix. Alternately updating
H and γ can optimize Eq. (2).

Optimizing H with fixed γ. With γ fixed, the optimization
in Eq. (2) toward H is exactly the traditional kernel k-means
presented in Eq. (3)

max H Tr
(
H>KγH

)
s.t. H ∈ Rn×k,H>H = Ik, (3)

The optimal H in Eq. (3) consists of the k eigenvectors
corresponding to the top-k eigenvalues of Kγ [34].

Optimizing γ with fixed H. With H fixed, the equivalent
form of the optimization in Eq. (2) with regard to γ is as
follows

min
γ

∑m

p=1
γ2pTr

(
Kp(In −HH>)

)
s.t. γ>1m = 1, γp ≥ 0,

(4)
which has a closed-form solution.

B. MKKM with Incomplete Kernels (MKKM-IK)

MKKM has recently been extended to handle incomplete
multiple kernel clustering in [31, 33]. Previous algorithms
first manage to impute the incomplete kernel matrices and
then apply existing MKKM on the imputed kernel matrices.
In contrast, they propose to unify the learning process of impu-
tation and clustering into a common learning framework and
establish an effective optimization algorithm to optimize each
of them alternately. In MKKM-IK, the clustering procedure
provides a guidance for the imputation of the incomplete base
kernel matrices, and the clustering is further enhanced by the
imputed kernels. Both procedures are alternated performed
until achieving optimal results. The above idea can be achieved
as follows

minH, γ, {Kp}mp=1
Tr
(
Kγ(In −HH>)

)
s.t. H ∈ Rn×k,H>H = Ik,

γ>1m = 1, γp ≥ 0,

Kp(ep, ep) = K(dd)
p , Kp � 0, ∀p,

(5)

where ep (1 ≤ p ≤ m) denotes the sample indices, the p-
th view is observed and K

(dd)
p denotes the kernel sub-matrix.

Note that we impose the constraint Kp(ep, ep) = K
(dd)
p to

make the known entries of Kp kept unchanged during the
learning course. The imputation of incomplete kernels can be
regarded as a by-product of learning, because the ultimate goal
of Eq. (5) is clustering. A tri-level optimization strategy is
developed in [31] develops to solve Eq. (5) alternately.

Optimizing H with γ and {Kp}mp=1 fixed. Given γ and
{Kp}mp=1, the optimization in Eq. (5) with respect to H is
equivalent to a kernel k-means problem solved by Eq. (3);

Optimizing {Kp}mp=1 with γ and H fixed. Given γ and
H, Eq. (5) towards each Kp is equivalently reformulated as
follows,

minKp
Tr
(
Kp(In −HH>)

)
s.t. Kp(ep, ep) = K(dd)

p , Kp � 0.
(6)

It is proven in [31] that the optimal Kp in Eq. (6) has the
closed-form solution as in Eq. (7), where Z = In − HH>

and taking the elements of Z corresponding to the observed
and unobserved sample indices can construct Z(dm). For more
details, please refer to [31].

Optimizing γ with H and {Kp}mp=1 fixed. Given H and
{Kp}mp=1, Eq. (5) with respect to γ reduces to a quadratic
programming with linear constraints.

C. Localized Incomplete MKKM (LI-MKKM)

Although it is ingenious to unify clustering and imputation
into one learning process, which is achieved by globally
maximizing the alignment between the optimal kernel matrix
Kγ and the ideal matrix HH>, as presented in Eq. (2). This
criterion does not take full advantage of the local distribution
of data, and requires that all paired samples, whether closer or
farther, should be consistent with the ideal similarity without
distinction.

Instead of calculating the alignment between the optimal
kernel and the idea matrix in a global manner as in Eq. (5),
localized incomplete MKKM (LI-MKKM) [32] is proposed
to utilize the local structure among data by only requiring the
similarity of each sample to align with its nearest neighbours.
Specifically, the objective function of LI-MKKM is as follows,

min
γ, {Kp}mp=1,H

∑n

i=1
Tr(Kγ(A

(i) −A(i)HH>A(i)))

s.t. H ∈ Rn×k, H>H = Ik, γ
>1m = 1, γp ≥ 0,

Kp(ep, ep) = K(dd)
p , Kp � 0, ∀p,

(8)
where A(i) = U(i)U(i)> with U(i) ∈
{0, 1}n×round(n∗τ) (1 ≤ i ≤ n) denoting the neighborhood
index matrix of the i-th sample. U(i)

jv = 1 reprensents that xj is
the v-th nearest neighbor of xi, where 1 ≤ v ≤ round(n ∗ τ)
and τ is the ratio of the nearest neighbors.

Similar to [31], the work in [32] develops a tri-step opti-
mization algorithm to solve Eq. (8) and theoretically proves
its convergence. Please refer to [32] for more details.

III. LOCALIZED INCOMPLETE MULTIPLE KERNEL
k-MEANS WITH MATRIX-INDUCED REGULARIZATION

A. The Formulation

Although aligning the optimal kernel with the ideal sim-
ilarity locally can improve the clustering performance, LI-
MKKM dose not explicitly take the correlation among base
kernels into account. This would prevent these incomplete base
kernels from being well utilized. To overcome this problem,
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Kp =

[
K

(dd)
p −K(dd)

p Z(dm)(Z(mm))−1

−(Z(mm))−1Z(dm)>K
(dd)
p (Z(mm))−1Z(dm)>K

(dd)
p Z(dm)(Z(mm))−1

]
(7)

we propose an improved algorithm based on LI-MKKM via in-
troducing a matrix-induced regularization γ>Mγ to decrease
the redundancy and enhance the diversity of the selected base
kernels, where Mpq measures the correlation between Kp

and Kq . By integrating this regularization into Eq. (8), the
following objective is obtained:

min
γ, {Kp}mp=1,H

n∑
i=1

Tr
(
Kγ(A

(i) −A(i)HH>A(i))
)
+
λ

2
γ>Mγ

s.t. H ∈ Rn×k, H>H = Ik,

γ>1m = 1, γp ≥ 0,

Kp(ep, ep) = K(dd)
p , Kp � 0, ∀p,

(9)
where λ is a hyper-parameter to balance the regularization on
kernel weights and the loss of local kernel k-means.

In this work, we adopt Mpq = Tr(KpKq) to measure
the correlation between Kp and Kq . On one hand, the in-
corporation of γ>Mγ is helpful for well utilizing the base
kernels, which is utilized to boost the clustering performance.
On the other hand, it makes the resultant optimization more
challenging since the optimization on each Kp is a quadratic
semi-defined programming, whose computational cost is in-
tensive and this prevents it from being applied to practical
applications. To reduce the computation overhead of Eq. (9),
we propose to approximate Mpq by M̃pq = Tr(K

(0)
p K

(0)
q )

and keep it unchanged during the learning course, where K
(0)
p

is an initial imputation of Kp. By substituting M with M̃,
the objective function of the proposed LI-MKKM-MR can be
expressed as follows,

min
γ, {Kp}mp=1,H

n∑
i=1

Tr(Kγ(A
(i) −A(i)HH>A(i))) +

λ

2
γ>M̃γ

s.t. H ∈ Rn×k, H>H = Ik,

γ>1m = 1, γp ≥ 0,

Kp(ep, ep) = K(dd)
p , Kp � 0, ∀p.

(10)
It is reasonable to measure the correlation of pairwise ker-

nels via observed similarity. Consequently, the approximation
M̃ can be regarded as a prior of M. Also, although this
approximation is simple, its advantages are three-folds. Firstly,
it fulfills our requirement on the kernel coefficients to enhance
the diversity and decrease the redundancy. Secondly, it simpli-
fies the optimization on {Kp}mp=1, making it admit a closed-
form solution. This significantly increases the computational
cost. Thirdly, the effectiveness of the proposed approximation
can be demonstrated by experiments.

Although the matrix-induced regularization may be ex-
ploited in other related aspects such as multiple kernel clus-
tering [14], this is the first work in literature to study the
regularization on incomplete multiple kernel clustering and
design a reasonable approximation for the convenience of

computation. Moreover, this would trigger more research on
incomplete multiple kernel clustering such as designing more
informative M, updating M with learned kernel weights and
the imputation at each iteration, to name just a few. More im-
portantly, our experimental study shows that the incorporation
of matrix-induced regularization helps to utilize the incomplete
kernels, leading to significantly improvement on clustering
performance. We develop a tri-step optimization strategy to
solve it alternately in the following parts.

B. Alternate Optimization of LI-MKKM-MR

Optimizing H with γ and {Kp}mp=1 fixed. Given γ
and {Kp}mp=1, the optimization objective w.r.t H in Eq. (10)
redefines to

max
H

Tr
(
H>

∑n

i=1
(A(i)KγA

(i))H
)

s.t. H ∈ Rn×k, H>H = Ik,
(11)

which is transformed into a classical kernel k-means-based
optimization objective, and can be conveniently tackled by the
existing public toolkit.

Optimizing {Kp}mp=1 with γ and H fixed. Given γ and
H, the optimization objective w.r.t {Kp}mp=1 in Eq. (10) can
be formulated as

min
{Kp}mp=1

m∑
p=1

γ2pTr

(
Kp

n∑
i=1

Tr(A(i) −A(i)HH>A(i))

)
s.t. Kp(ep, ep) = K(dd)

p , Kp � 0, ∀p.
(12)

It is difficult to solve the optimization problem in Eq. (12)
since there are multiple kernel matrices to be optimized
simultaneously. By cautiously analyze the optimization, we
observe that: i) each kernel matrix Kp has its own separate
constraint; and ii) the objective in Eq. (12) is a sum generated
by calculating Kp. As a result, Eq. (12) can be reformulated
as m uncorrelated sub-objectives equivalently, as shown in Eq.
(13),

min
Kp

Tr(KpQ)

s.t. Kp(ep, ep) = K(dd)
p , Kp � 0,

(13)

where Q =
∑n
i=1(A

(i) −A(i)HH>A(i)).
It seems that directly solving the Eq. (13) is difficult because

of the equality and PSD constraints imposed on Kp. By
following [32], we parameterize each Kp as

Kp =

[
K

(dd)
p K

(dd)
p Zp

Z>p K
(dd)
p Z>p K

(dd)
p Zp

]
, (14)

where Zp ∈ Rd×m. d and m refer to the number of observed
samples and unobserved ones, respectively. With Eq. (14), we
assume that the observed ones represent the missing kernel
entries. It is shown in [32] that Kp in Eq. (14) automatically
satisfies both constraints after this parameterization.
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Based on the parameterization in Eq. (14) , the constrained
optimization in Eq. (13) is equivalent to

minZp Tr

([
K

(dd)
p K

(dd)
p Zp

Z>p K
(dd)
p Z>p K

(dd)
p Zp

][
Q(dd) Q(dm)

Q(dm)> Q(mm)

])
,

(15)
where Q is decomposed into the following sub-matrices[

Q(dd) Q(dm)

Q(dm)> Q(mm)

]
.

To minimize Eq. (15), we take its derivative with respect to
Zp and let it vanish, leading to

Zp = −Q(dm)(Q(mm))−1. (16)

As a result, we obtain an analytical solution for the optimal Kp

by substituting the Zp in Eq. (16) into Eq. (14). As seen, Eq.
(13) provides a guidance for the imputation of each base kernel
by exploring the data structure in a local manner. Specifically,
it locally estimates the alignment between the similarity of
each sample and its τ -nearest neighbors with corresponding
ideal matrix. This enables the proposed algorithm to better uti-
lize the intra-cluster variations among samples. Therefore, the
clustering performance could be improved, mainly attributing
to an effective incomplete kernels imputation measure.

Optimizing γ with {Kp}mp=1 and H fixed. Given {Kp}mp=1

and H, it is easy to present that Eq. (10) w.r.t. γ is as below,

min
γ

1

2
γ>
(
2W + λM̃

)
γ

s.t. γ>1m = 1, γp ≥ 0,
(17)

where W = diag([Tr(K1Q), · · · ,Tr(KmQ)]). The Theorem
1 in the following indicates that W is PSD.

Theorem 1: The Hessian matrix 2W + λM̃ in Eq. (17) is
a symmetric PSD matrix.

Proof 1: By defining H = [h1, · · · ,hk], we can find out that
HH>hc = hc( 1 ≤ c ≤ k) since H>H = Ik. This indicates
that HH> has k eigenvalue with 1. Besides, its rank does not
exceed k. This means that its has n − k eigenvalue with 0.
In−HH> contains n−k eigenvalue with 1 and k eigenvalue
with 0. Consequently, A(i)(In − HH>)A(i) is PSD, which
ensures that Q =

∑n
i=1(A

(i) − A(i)HH>A(i)) is PSD. As
a result, we have wp = Tr(KpQ) ≥ 0, ∀p, guaranteeing
the positiveness of W. Meanwhile, W is also a symmetric
PSD matrix according to [35]. Consequently, 2W+ λM̃ is a
symmetric PSD matrix.

On the basis of Theorem 1, we can guarantee that the
optimization in Eq. (17) w.r.t γ is a traditional quadratic
programming (QP) with linear constraints. Therefore, it can
be conveniently handled by existing optimization packages.

Algorithm 1 presents an outline of solving Eq. (10) by the
proposed algorithm, where we adopt the zero-filling method to
initially impute the missing elements of {K(0)

p }mp=1 and utilize
obj(t) to represent the objective value at the t-th iteration.
Besides, the neighbors of each sample remain unvaried during
the optimization procedure in LI-MKKM-MR. In specific, we
calculate the τ -nearest neighbors of each sample by Kγ(0) .
By this way, the optimization target of LI-MKKM-MR is
guaranteed to be reduced in a monotonic manner when we
update one variable and keep the others unchanged itera-
tively. Simultaneously, the objective is lower-bounded by zero.

Algorithm 1 The Proposed LI-MKKM-MR

1: Input: {Kdd)
p }mp=1, {ep}mp=1, k, τ, λ and ε0.

2: Output: H, γ and {Kp}mp=1.
3: Initialize γ(0) = 1m/m, {K(0)

p }mp=1 and t = 1.
4: Generate U(i) for i-th samples (1 ≤ i ≤ n) by Kγ(0) .
5: Calculate A(i) = U(i)U(i)> for i-th samples (1 ≤ i ≤ n).

6: repeat
7: Kγ(t) =

∑m
p=1

(
γ
(t−1)
p

)2
K

(t−1)
p .

8: Update H(t) by solving Eq. (11) with Kγ(t) .
9: Update {K(t)

p }mp=1 with H(t) by Eq. (13).
10: Update γ(t) by solving Eq. (17) with H(t) and

{K(t)
p }mp=1.11: t = t+ 1.

12: until
(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

Hence, it is guaranteed that LI-MKKM-MR converges into a
local optimal solution. Experimental results have demonstrated
that our method usually converges quickly.

The end of this part analyzes the computational complexity
of our method. In specific, the computational complexity of LI-
MKKM-MR is O(n3+

∑m
p=1 n

3
p+m

3) at each iteration, where
np (np ≤ n) and m refer to the number of observed samples
of Kp and base kernels. The complexity of LI-MKKM-MR
can be compared to that of MKKM-IK [31] and LI-MKKM
[32]. Moreover, each sample of Kp is independent so that they
can be measured in a parallel manner. By this means, our LI-
MKKM-MR can scale well regardless of the variation of the
base kernels number.

IV. THEORETICAL RESULTS

The generalization error of k-means clustering algorithm
has been widely discussed in existing literature [36–38].
We first establish the theoretical connection between existing
MKKM-IK [38] with LI-MKKM-MR, and further derive the
generalization error bound of LI-MKKM-MR based on the
theoretical results in [38]. The following Theorem 2 points
out that the local kernel alignment adopted in our LI-MKKM-
MR can be achieved by normalizing each base kernel matrix.

Theorem 2: The local kernel alignment criterion in Eq. (8)
is equivalent to the widely adopted global kernel alignment by
normalizing each base kernel matrix.

Proof 2: The objective function in Eq. (8) can be written as

∑n

i=1
Tr
(
Kγ(A

(i) −A(i)HH>A(i))
)

=
∑n

i=1
〈A(i) ⊗Kγ ,A

(i) ⊗ (I−HH>)〉F

=
∑n

i=1
〈A(i) ⊗Kγ , I−HH>〉F

= 〈
(∑n

i=1
A(i)

)
⊗Kγ , I−HH>〉F

=
∑m

p=1
γ2p〈
(∑n

i=1
A(i)

)
⊗Kp, I−HH>〉F

=
∑m

p=1
γ2p〈K̃p, I−HH>〉F

= Tr
(
K̃γ(I−HH>)

)
,

(18)
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where ⊗ denotes elementwise multiplication between two
matrices, K̃p =

(∑n
i=1 A

(i)
)
⊗ Kp can be treated as a

normalized Kp, and K̃γ =
∑m
p=1 γ

2
pK̃p. Consequently, by

such normalization applied on each base kernel, we can clearly
see that the local kernel alignment criterion in Eq. (8) is exactly
the global kernel alignment in [38]. This completes the proof.

Let t(x(p)) = 1 if the p-th view of x is available, oth-
erwise x(p) should be optimized. It is worth pointing out
that t(x(p)) is a random variable which depends on x. Let
Ĉ = [Ĉ1, · · · , Ĉk] be the k centroids and γ̂ be the kernel
weights learned by LI-MKKM-MR. k-means clustering should
make the reconstruction error small

E
[

min
y∈{e1,··· ,ek}

∥∥∥φγ̂(x)− Ĉy
∥∥∥2
H

]
, (19)

where φγ̂(x) = [γ̂1t(x
(1))φ>1 (x

(1)), · · · , γ̂mt(x(m))φ>m(x(m))]>,

e1, · · · , ek form the orthogonal bases of Rk.
We first define a function class:

F =
{
f : x 7→ min

y∈{e1,...,ek}
‖φγ(x)−Cy‖2H

∣∣∣γ>1m = 1, γp ≥ 0,

C ∈ Hk, t(x(p)
i )t(x

(p)
j )κ̃>p (x

(p)
i ,x

(p)
j ) ≤ b, ∀p, ∀xi ∈ X

}
,

(20)
where Hk represents the multiple kernel Hilbert space and
κ̃(·, ·) is a kernel function corresponding to K̃p.

Based on Theorem 2, we derive the generalization error
bound of the proposed LI-MKKM-MR by following [38].

Theorem 3: For any δ > 0, with probability at least 1− δ,
the following holds for all f ∈ F :

E[f(x)] ≤ 1

n

n∑
i=1

f(xi) +
4
√
πmbG1n(γ, t)

n
+

4
√
πmbG2n(γ, t)

n

+

√
8πbk2√
n

+ 2b

√
log 1/δ

2n
,

(21)
where

G1n(γ, t) , Eγ

[
sup
γ,t

n∑
i=1

m∑
p,q=1

γipqt(x
(p)
i )t(x

(q)
i )γpγq

]
, (22)

G2n(γ, t) = Eγ

[
sup
γ,t

n∑
i=1

k∑
c=1

m∑
p=1

γicpγpt(x
(p)
i )

]
, (23)

and γipq, γicp, i ∈ {1, . . . , n}, p, q ∈ {1, . . . ,m}, c ∈
{1, . . . , k} are i.i.d. Gaussian random variables with zero mean
and unit standard deviation.

According to analyses in [38], our local kernel alignment
criterion in Eq. (8), with normalized base kernel matrices, is
an upper bound of 1

n

∑n
i=1 f(xi). As a result, by minimizing

Tr(K̃γ(In − HH>)), one can get a small 1
n

∑n
i=1 f(xi)

for good generalization. This justifies the good generalization
ability of the LI-MKKM-MR. The detailed proof has been
presented in the supplementary material.

V. EXPERIMENTS

A. Experimental Settings

In our experiments, we adopt ten widely used MKL bench-
mark data sets to verify the proposed algorithms, including

Oxford Flower17 and Flower1021, Caltech1022, Digital3 and
Protein Fold Prediction4, The information of them is shown
in Table II. The kernel matrices of these datasets are pre-
computed, and can be directly obtained from the aforemen-
tioned link. Caltech102-5 refers to the number of samples
belonging to each cluster is 5, and the same for the rest
datasets. The publicly access codes for kernel k-means and
MKKM can be found in the website 5.

Several well-known and widely used imputation methods,
such as zero filling (ZF), mean filling (MF), k-nearest-
neighbor filling (KNN), alignment-maximization filling (AF)
are contained in [27]. After that, researchers take the imputed
kernel matrices as the input of classical MKKM. The kind
of two-stage methods are named MKKM+ZF, MKKM+MF,
MKKM+KNN and MKKM+AF, respectively. Also, the newly
proposed MKKM-IK [31], LI-MKKM [32], MVEC [39] and
CG-IMVC [40] are also incorporated as strong baselines.
The algorithms in [28, 29, 41] are not incorporated into
our experimental comparison since that these algorithms only
consider the missing of input features, rather than the rows or
columns of base kernel matrices in our case.

In the experiment, ε is used to denote the percentage of
incomplete samples. Intuitively, the clustering performance
will become less accurate when the value of ε is increasing.
In our simulation, we set ε as [0.1 : 0.1 : 0.9] on all the 10
data sets. The performance metrics in this simulation include
the clustering accuracy (ACC), normalized mutual information
(NMI) and purity. For each method, we present the best result
among 50 trials, where each trial started from a random initial-
ization state. As a result, the effect of randomness caused by k-
means could be alleviated. We generate “incomplete” patterns
randomly for 10 times and report the statistical results. For all
datasets, the quantity of clusters is given and set as the ground
truth of classes. The generation of the missing vectors {sp}mp=1

follows the approach in [31]: (1) Randomly select round(ε∗n)
samples with the rounding function round(·). (2) Generate a
random vector v = (v1, · · · , vk, · · · , vm), vk ∈ [0, 1] and a
scalar v0, v0 ∈ [0, 1] for each selected sample. (3) If vp ≥ v0,
it present the p-th view for this sample. (4) If there is no
vp ≥ v0, generate a new v. Note that there is no requirement
on complete view for each sample. In this instance, the index
vector sp is obtained to list the samples with the presentation
on the p-th view.

B. Experimental Results
Experiments on Flower17 and Flower102. Three per-

formance metrics, including the ACC, NMI and purity, of
the testing algorithms with the variation of missing ratios
in [0.1, · · · , 0.9] on the Flower17 and Flower102 datasets
have been demonstrated in Figure 1. We have the following
observations.
• The newly proposed MKKM-IK [33] (in green)

has shown promising performance improvements

1 http://www.robots.ox.ac.uk/˜+vgg/data/flowers/
2 http://files.is.tue.mpg.de/pgehler/projects/iccv09/
3 http://ss.sysu.edu.cn/˜+py/
4 http://mkl.ucsd.edu/dataset/protein-fold-prediction/
5 https://github.com/mehmetgonen/lmkkmeans/
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Figure 1: Clustering accuracy, NMI and purity comparison with the variation of missing ratios on Flower17 and Flower102
datasets.

Table III: Aggregated ACC, NMI and purity comparison (mean±std) of different kinds of clustering algorithms on Flower17
and Flower102 datasets.

Datasets MKKM MKKM-IK LI-MKKM MVEC CG-IMVC LI-MKKM-MR
+ZF +MF +KNN +AF [27] [33] [32] [39] [40] Proposed

ACC
Flower17 36.9± 0.8 36.8± 0.6 37.8± 0.6 40.5± 0.7 44.6± 0.6 48.0± 0.4 24.9± 0.4 37.1± 0.7 56.6± 0.3

Flower102 18.0± 0.2 18.0± 0.2 18.2± 0.1 19.2± 0.1 21.1± 0.2 23.1± 0.1 − 19.7± 0.3 30.5± 0.3
NMI

Flower17 37.3± 0.4 37.3± 0.5 38.2± 0.5 40.1± 0.4 43.7± 0.3 46.4± 0.2 20.7± 0.4 36.5± 0.7 53.5± 0.2
Flower102 37.4± 0.1 37.4± 0.1 37.8± 0.1 38.4± 0.1 39.6± 0.1 41.8± 0.1 − 25.8± 0.3 47.5± 0.1

Purity
Flower17 38.4± 0.6 38.3± 0.6 39.3± 0.6 42.0± 0.6 45.9± 0.5 48.9± 0.4 25.7± 0.4 40.1± 0.7 57.3± 0.2

Flower102 22.5± 0.1 22.4± 0.1 22.8± 0.1 23.7± 0.2 25.8± 0.2 28.1± 0.1 − 22.9± 0.3 35.8± 0.3

Table II: Datasets summary.

Dataset #Samples #Views #Classes
Flower17 1360 7 17
Flower102 8189 4 102
Caltech102-5 510 48 102
Caltech102-10 1020 48 102
Caltech102-15 1530 48 102
Caltech102-20 2040 48 102
Caltech102-25 2550 48 102
Caltech102-30 3060 48 102
Digital 2000 3 10
ProteinFold 694 12 27

on the ACC, NMI and purity compared with
the previous two-stage imputation methods. For
example, the MKKM+AF outperforms MKKM-IK by
0.1%, 0.6%, 2.5%, 2.8%, 4.1%, 4.7%, 6.0%, 8.5%, 8.2%
in terms of clustering accuracy on Flower17, which
clearly demonstrates the benefit of the joint optimization

on imputation and clustering.
• Also, LI-MKKM outperforms MKKM-IK by
8.4%, 4.4%, 5.8%, 3.1%, 2.6%, 2.6%, 1.2%, 0.2%, 2.2%
on Flower17. This result clearly verifies that the utilizing
data’s local structure further boosts the clustering
performance.

• Furthermore, our proposed LI-MKKM-MR (in
red) significantly outperforms the LI-MKKM
in all cases from Fig.1a to 1f in the aspect
of clustering performance. For example, LI-
MKKM-MR further outperforms LI-MKKM by
8.5%, 11.2%, 9.7%, 10.1%, 9.4%, 9.2%, 8.2%, 7.7%, 3.6%.
This result indicates the effectiveness of incorporating
the matrix-induced regularization.

• In addition, our newly proposed method demonstrates
stronger advantage when compared to previous ones,
especially under low missing ratios. It is noticeably
that in Figure 1a, when the missing ratio is extremely
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Figure 2: Clustering accuracy, NMI and purity comparison with the variation of missing ratios on Caltech102-20, Caltech102-25
and Caltech102-30.

Table IV: Total ACC, NMI and purity comparison (mean±std) of various clustering algorithms on Caltech102. On account of
out of memory, the clustering results of MVEC [39] on Caltech102-15, Caltech102-20, Caltech102-25 and Caltech102-30 are
not reported.

MKKM MKKM-IK LI-MKKM MVEC CG-IMVC LI-MKKM-MR
+ZF +MF +KNN +AF [27] [33] [32] [39] [40] Proposed

ACC
Cal102-5 26.1± 0.3 25.7± 0.3 27.3± 0.3 29.0± 0.3 28.9± 0.3 31.4± 0.3 26.8± 0.2 33.8± 0.2 34.0± 0.3

Cal102-10 19.7± 0.2 19.7± 0.2 21.5± 0.2 22.6± 0.2 22.7± 0.2 27.3± 0.2 22.4± 0.1 28.9± 0.2 28.9± 0.3
Cal102-15 17.1± 0.2 17.1± 0.2 18.9± 0.1 20.3± 0.2 20.8± 0.2 25.1± 0.2 − 27.3± 0.1 27.0± 0.4
Cal102-20 15.7± 0.1 15.7± 0.2 17.3± 0.2 18.9± 0.2 19.5± 0.1 24.1± 0.2 − 25.8± 0.2 26.3± 0.2
Cal102-25 14.7± 0.2 14.6± 0.1 16.2± 0.1 17.7± 0.2 18.3± 0.2 23.3± 0.2 − 24.6± 0.2 25.5± 0.2
Cal102-30 14.2± 0.1 14.1± 0.1 15.5± 0.2 17.1± 0.2 17.8± 0.2 22.2± 0.1 − 23.5± 0.1 24.6± 0.1

NMI
Cal102-5 64.3± 0.2 63.9± 0.1 65.9± 0.2 66.6± 0.1 66.5± 0.2 67.1± 0.2 65.6± 0.1 52.9± 0.4 68.6± 0.2

Cal102-10 53.6± 0.1 53.7± 0.1 55.2± 0.1 55.7± 0.2 55.8± 0.1 58.7± 0.1 55.1± 0.1 40.4± 0.5 59.2± 0.3
Cal102-15 47.4± 0.1 47.4± 0.1 48.8± 0.1 49.7± 0.1 50.1± 0.1 53.6± 0.1 − 37.0± 0.3 54.6± 0.2
Cal102-20 43.1± 0.1 43.1± 0.2 44.5± 0.1 45.6± 0.2 46.0± 0.1 50.4± 0.1 − 34.4± 0.3 51.8± 0.1
Cal102-25 40.0± 0.1 39.9± 0.1 41.5± 0.1 42.5± 0.2 43.0± 0.2 47.7± 0.2 − 32.9± 0.3 49.4± 0.1
Cal102-30 37.8± 0.1 37.7± 0.1 39.2± 0.1 40.3± 0.1 40.9± 0.1 45.6± 0.1 − 31.3± 0.2 47.4± 0.1

Purity
Cal102-5 26.7± 0.4 26.4± 0.3 27.9± 0.3 29.8± 0.3 29.6± 0.3 32.6± 0.3 27.3± 0.2 35.9± 0.2 35.5± 0.3

Cal102-10 21.0± 0.2 21.0± 0.2 22.9± 0.2 24.0± 0.3 24.2± 0.2 29.0± 0.2 23.3± 0.1 31.7± 0.2 30.8± 0.3
Cal102-15 18.5± 0.2 18.5± 0.2 20.4± 0.2 21.6± 0.2 22.2± 0.2 26.7± 0.2 − 30.2± 0.1 28.8± 0.3
Cal102-20 17.1± 0.1 17.0± 0.2 18.8± 0.2 20.2± 0.2 20.9± 0.1 25.8± 0.2 − 29.0± 0.2 28.1± 0.2
Cal102-25 16.0± 0.2 16.0± 0.2 17.7± 0.2 19.1± 0.2 19.7± 0.1 25.2± 0.2 − 28.4± 0.1 27.6± 0.2
Cal102-30 15.4± 0.1 15.4± 0.1 17.0± 0.1 18.4± 0.2 19.1± 0.2 24.0± 0.1 − 27.3± 0.1 26.5± 0.1
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low (ε=0.1), LI-MKKM-MR improves the second best
algorithm (LI-MKKM) by 8.5% in terms of clustering
accuracy on Flower17.

In Table III, the aggregated ACC, NMI, purity, and the
standard deviation are reported, where we show the highest
performance one in bold. Similarly, the results also illustrates
that MKKM+ZF, MKKM+MF, MKKM+KNN, MKKM+AF
and MKKM-IK are outperformed by the proposed algorithm.
Specifically, the second best one (LI-MKKM) is exceeded by
the proposed LI-MKKM-MR by 7%.

Experiments on Caltech102 Dataset. Figure 2 presents
ACC, NMI and purity of all the testing algorithms over
variational missing ratios on Caltech102 datasets. We find
out that the recently proposed MKKM-IK [33] (in green)
achieves a comparable clustering performance with a repre-
sentative two-stage imputation method MKKM+AF, while the
proposed LI-MKKM outperforms MKKM-IK with significant
improvements on all the performance criterions, details can
be found in Fig.2a to 2i. More precisely, LI-MKKM ob-
tains 6.4%, 5.0%, 5.1%, 4.7%, 4.6%, 4.5%, 3.8%, 3.2%, 2.6%
higher clustering accuracy than MKKM-IK when the missing
ratios vary from 0.1 to 0.9 on Caltech102-30. This also
illustrates that the well utilization of the local structure of data
assures performance improvement. Furthermore, by taking into
account the correlation among base kernels, LI-MKKM-MR
further improves the clustering performance over the baseline
LI-MKKM.

The aggregated ACC, NMI and purity, and the stan-
dard deviation on Caltech 102 datasets are reported in
Table IV. Similarly, in comparison to the MKKM+ZF,
MKKM+MF, MKKM+KNN, MKKM+AF and MKKM-IK,
our method still achieves much better clustering perfor-
mance. For instance, the proposed LI-MKKM-MR obtains
2.1%, 2.1%, 2.8%, 2.4%, 2.7%, 2.4% higher clustering accu-
racy than LI-MKKM. In addition, LI-MKKM-MR achieves
comparable clustering performance with the newly pro-
posed CG-IMVC [40] in terms of ACC and purity on Cal-
tech102. However, LI-MKKM-MR significantly outperforms
CG-IMVC in terms of NMI. The results on Caltech102-5,
Caltech102-10 and Caltech102-15 are provided in the supple-
mental material due to space limit, whose results demonstrate
the same conclusion as well.

Experiments on UCI-Digital Dataset. In this simulation,
we apply all the testing methods on UCI-Digital dataset,
which is widely utilized in in multiple kernel clustering as
a benchmark. For each kind of missing ratio, we generate
“incomplete patterns” for 10 times and report their averaged
results.

The ACC, NMI and purity of all the testing methods
over variational missing ratios are presented in Figure 3.
It is clear that the latest proposed MKKM-IK provides
unsatisfactory results on UCI-Digital, which is even worse
than MKKM+KNN. However, LI-MKKM significantly
outperforms the second best one (MKKM+KNN) by
22.2%, 21.9%, 20.6%, 19.5%, 17.9%, 17.9%, 20.4%, 23.8%
and 23.2% on accuracy. In addition, the proposed LI-MKKM-
MR further consistently improves the clustering performance

of LI-MKKM. The aggregated clustering results in Table V
also denote the same performance.

Experiments on Protein Fold Prediction Dataset. In this
experiment, the protein fold dataset is applied to evaluate the
testing methods, and we report all results in Figure 4 and Table
VI. Also, we can find that our LI-MKKM-MR also achieves
much better results than the rest algorithms on ACC, NMI and
purity on the dataset.

In short, we think our algorithm has three advantages:
• The joint optimization based on imputation and cluster-

ing. First of all, the process of imputation is guided by
the clustering results, which makes the imputation more
direct to the final goal. Second, refining the clustering
results can benefits from this meaningful imputation.
These two learning processes work well together, thus
leads to the clustering performance improvement. In
contrast, MKKM+MF, MKKM+KNNMKKM+ZF, and
MKKM+AF algorithms do not fully make use of the
connection between the imputation and clustering proce-
dures. This may produce imputation which does not well
serve the subsequent clustering as originally expected,
affecting the clustering performance;

• Considerably utilizing data’s local structure. Our local
kernel alignment criterion is flexible and it makes the
pre-specified kernels aligned for better clustering perfor-
mance;

• Well considering the correlation of incomplete base
kernels. The incorporated matrix-induced regularization
reduces the high redundancy and enforces low diversity
among the selected kernels, making the pre-specified
kernels be well utilized.

These factors have led to significant improvements in cluster
performance.

C. Parameter Sensitivity of LI-MKKM-MR

In this part, we analyze that relationship between the cluster-
ing performance and matrix-induced regularization. Referring
to the Eq.(10), LI-MKKM-MR induces the ratio of the nearest
neighbors τ and regularization parameter λ. In the following,
we conduct another experiment to show the variation of
performance among different τ and λ on Flower17 dataset.

Figure 5a and 5b shows the ACC and NMI of our algorithm
by varying τ in a huge range [0.02 : 0.02 : 0.2] with λ = 2−6.
From these figures, we can find that: i) The ACC fluctuates
with the monotonically increasing of τ . ii) The start points
of the ACC curves are typically higher than the end points,
which induces that when the matrix-induced regularization
term is dominated at ending points while the local kernel
alignment maximization is dominated at starting points. These
observations verify the successful joint preservation of local
structure of data and matrix-induced regularization term in our
algorithm. Similarly, 5c and 5d presents the ACC and NMI of
our algorithms by tuning λ from 2−9 to 2 with τ = 0.1.
In this scenario, our algorithm also shows stable performance
over variational λ.

As aforementioned, we conclude that comparing to only
preserving global kernel alignment, such as MKKM-IK in

Page 9 of 18 Transactions on Cybernetics



SUBMITTED TO IEEE T-CYBERNETICS, MONTH JANUARY, YEAR 2021 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

missing ratio

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C
UCI DIGIT

MKKM+ZF

MKKM+MF

MKKM+KNN

MKKM+AF

MKKM-IK

LI-MKKM

MVEC

CG-IMVC

LI-MKKM-MR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

missing ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
M

I

UCI DIGIT

MKKM+ZF

MKKM+MF

MKKM+KNN

MKKM+AF

MKKM-IK

LI-MKKM

MVEC

CG-IMVC

LI-MKKM-MR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

missing ratio

0.4

0.5

0.6

0.7

0.8

0.9

P
u
ri
ty

UCI DIGIT

MKKM+ZF

MKKM+MF

MKKM+KNN

MKKM+AF

MKKM-IK

LI-MKKM

MVEC

CG-IMVC

LI-MKKM-MR

Figure 3: Clustering accuracy, NMI and purity comparison with the variation of missing ratios on UCI-digital dataset.

Table V: Total ACC, NMI and purity comparison (mean±std) of various clustering algorithms on UCI-Digital.

MKKM MKKM-IK LI-MKKM MVEC CG-IMVC LI-MKKM-MR
+ZF +MF +KNN +AF [27] [33] [32] [39] [40] Proposed

ACC
42.7± 0.4 43.1± 0.3 71.3± 1.0 47.9± 0.5 48.0± 0.4 82.9± 0.3 35.0± 0.8 73.3± 1.1 92.1± 0.3

NMI
41.8± 0.2 40.0± 0.2 63.3± 0.5 47.0± 0.2 46.9± 0.2 73.4± 0.3 31.3± 1.1 73.3± 0.9 84.8± 0.4

Purity
44.6± 0.5 43.4± 0.3 71.4± 0.7 50.4± 0.3 50.8± 0.4 82.9± 0.3 37.8± 0.8 76.3± 1.0 92.1± 0.3
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Figure 4: Clustering accuracy, NMI and purity comparison with the variation of missing ratios on protein Fold Prediction
dataset.

Table VI: Total ACC, NMI and purity comparison (mean±std) of various clustering algorithms on Protein Fold Prediction
dataset.

MKKM MKKM-IK LI-MKKM MVEC CG-IMVC LI-MKKM-MR
+ZF +MF +KNN +AF [27] [33] [32] [39] [40] Proposed

ACC
20.8± 0.2 20.5± 0.3 21.1± 0.5 21.0± 0.2 23.2± 0.6 24.5± 0.5 17.1± 0.2 23.2± 0.3 26.5± 0.2

NMI
29.3± 0.4 29.5± 0.5 30.5± 0.4 29.5± 0.3 32.3± 0.6 33.5± 0.3 22.3± 0.2 17.5± 0.6 34.6± 0.2

Purity
27.2± 0.4 27.2± 0.4 27.9± 0.5 27.5± 0.4 29.8± 0.7 30.8± 0.4 21.8± 0.2 25.2± 0.5 31.9± 0.3

[33], our proposed algorithms is more essential to the clus-
tering performance by preserving the local structure of data.
Meanwhile, the clustering performance could be further im-
proved by incorporating the correlation among base kernels.
By appropriately integrating these two factors, it is possible to
obtain the best clustering performance. Practically, there exists
a trade-off between the preservation of the local geometric
structure and the correlation of base kernels to ensure the best

clustering.

D. Convergence of LI-MKKM-MR

According to [42], the convergence of our proposed algo-
rithm is guaranteed. We present one simulation trail of the
proposed LI-MKKM-MR on Flower 17 dataset as an example
in 6. It is clearly shown that the objective value of the proposed
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Figure 5: The sensitivity of the proposed LI-MKKM-MR with the variation of λ and τ .
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Figure 6: Proposed algorithm convergence illustration.

algorithm is monotonically decreased and converges in a few
iteration.

VI. CONCLUSION

Though the newly proposed LI-MKKM is able to tackle
the task of multiple kernel clustering with incomplete kernels,
it takes the correlation among base kernels into account
insufficiently. We propose to calculate the kernel alignment
to address this issue together with a matrix-induced regular-
ization in a local manner. The proposed algorithm efficiently
solves the resultant optimization problem, and extensive exper-
iments on benchmarks have demonstrated that LI-MKKM-MR
consistently outperforms state-of-the-art baseline algorithms.
In the future, instead of keeping the nearest neighbors of
each sample unchanged, updating them automatically during
the learning course will be further investigated for clustering
performance improvement. Moreover, we will design efficient
and effective algorithms to solve the optimization problem
directly without approximating M in Eq. (9).
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“Multiview clustering with incomplete views,” in NIPS
2010: Machine Learning for Social Computing Workshop
,Whistler, Canada, 2010.

[28] C. Xu, D. Tao, and C. Xu, “Multi-view learning with in-
complete views,” IEEE Trans. Image Processing, vol. 24,
no. 12, pp. 5812–5825, 2015.

[29] W. Shao, L. He, and P. S. Yu, “Multiple incomplete views
clustering via weighted nonnegative matrix factorization
with `2,1 regularization,” in ECML PKDD, 2015, pp.
318–334.

[30] S. Bhadra, S. Kaski, and J. Rousu, “Multi-view kernel
completion,” in arXiv:1602.02518, 2016.

[31] X. Liu, M. Li, L. Wang, Y. Dou, J. Yin, and E. Zhu,
“Multiple kernel k-means with incomplete kernels,” in
AAAI, 2017, pp. 2259–2265.

[32] X. Zhu, X. Liu, M. Li, E. Zhu, L. Liu, Z. Cai, J. Yin,
and W. Gao, “Localized incomplete multiple kernel k-
means,” in IJCAI, 2018, pp. 3271–3277.

[33] X. Liu, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, M. Kloft,
D. Shen, J. Yin, and W. Gao, “Multiple kernel k-means

with incomplete kernels,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 5, pp.
1191–1204, 2019.

[34] S. Jegelka, A. Gretton, B. Schölkopf, B. K. Sriperum-
budur, and U. von Luxburg, “Generalized clustering via
kernel embeddings,” in KI 2009: Advances in Artificial
Intelligence, 32nd Annual German Conference on AI,
2009, pp. 144–152.

[35] C. Cortes, M. Mohri, and A. Rostamizadeh, “Algorithms
for learning kernels based on centered alignment,” JMLR,
vol. 13, pp. 795–828, 2012.

[36] A. Maurer and M. Pontil, “k-dimensional coding
schemes in Hilbert spaces,” IEEE Transactions on In-
formation Theory, vol. 56, no. 11, pp. 5839–5846, 2010.

[37] T. Liu, D. Tao, and D. Xu, “Dimensionality-dependent
generalization bounds for k-dimensional coding
schemes,” Neural computation, vol. 28, no. 10, pp.
2213–2249, 2016.

[38] X. Liu, X. Zhu, M. Li, L. Wang, E. Zhu, T. Liu, M. Kloft,
D. Shen, J. Yin, and W. Gao, “Multiple kernel k-means
with incomplete kernels,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2019.

[39] Z. Tao, H. Liu, S. Li, Z. Ding, and Y. Fu, “From ensemble
clustering to multi-view clustering,” in IJCAI, 2017, pp.
2843–2849.

[40] W. Zhou, H. Wang, and Y. Yang, “Consensus graph learn-
ing for incomplete multi-view clustering,” in Advances in
Knowledge Discovery and Data Mining, 2019, pp. 529–
540.

[41] H. Zhao, H. Liu, and Y. Fu, “Incomplete multimodal
visual data grouping,” in IJCAI, 2016, pp. 2392–2398.

[42] J. C. Bezdek and R. J. Hathaway, “Convergence of
alternating optimization,” Neural, Parallel Sci. Comput.,
vol. 11, no. 4, pp. 351–368, 2003.

Page 12 of 18Transactions on Cybernetics



SUBMITTED TO IEEE T-CYBERNETICS, MONTH JANUARY, YEAR 2021 1

Appendix of “Localized Incomplete Multiple Kernel
k-means with Matrix-induced Regularization”

Jingyuan Xia, Miaomiao Li, Huiying Xu, Qing Liao, Xinzhong Zhu, Xinwang Liu

I. SUMMARY OF THE APPENDIX

The following sections are arranged as follows. In Section II and III, we provide the generalization analysis of the proposed
LI-MKKM-MR and give the detailed proof. After that, we report some additional experimental results in Section IV, including
all clustering results on Caltech102-5, Caltech102-10 and Caltech102-15.

II. THEORETICAL RESULTS

The generalization error of k-means clustering algorithm measures the clustering performance of the learned clusters in
training procedure on unseen samples [1–3]. In this section, we first build the theoretical connection between existing MKKM-
IK [3] with LI-MKKM-MR, and then derive the generalization error bound of the proposed LI-MKKM-MR based on the
theoretical results in [3]. The following Theorem 1 states that the local kernel alignment adopted in our LI-MKKM-MR can
be fulfilled by normalizing each base kernel matrix.

Theorem 1: The local kernel alignment criterion in Eq. (8) (in the manuscript) is equivalent to the widely adopted global
kernel alignment by normalizing each base kernel matrix.

Proof 1: The objective function in Eq. (8) (in the manuscript) can be written as∑n

i=1
Tr
(
Kγ(B

(i) −B(i)HH>B(i))
)

=
∑n

i=1
〈B(i) ⊗Kγ ,B

(i) ⊗ (I−HH>)〉F

=
∑n

i=1
〈B(i) ⊗Kγ , I−HH>〉F

= 〈
(∑n

i=1
B(i)

)
⊗Kγ , I−HH>〉F

=
∑m

p=1
γ2p〈
(∑n

i=1
B(i)

)
⊗Kp, I−HH>〉F

=
∑m

p=1
γ2p〈K̃p, I−HH>〉F

= Tr
(
K̃γ(I−HH>)

)
,

(1)

where ⊗ denotes elementwise multiplication between two matrices, K̃p =
(∑n

i=1 B
(i)
)
⊗Kp can be treated as a normalized

Kp, and K̃γ =
∑m
p=1 γ

2
pK̃p. Consequently, by such normalization applied on each base kernel, we can clearly see that the

local kernel alignment criterion in Eq. (8) (in the manuscript) is exactly the global kernel alignment in [3]. This completes the
proof.

Let t(x(p)) = 1 if the p-th view of x is available, otherwise x(p) needs to be optimized. Note that t(x(p)) is a random
variable which depends on x. Let Ĉ = [Ĉ1, · · · , Ĉk] be the k centroids and β̂ be the kernel weights learned by LI-MKKM-MR.
k-means clustering should make the following reconstruction error small

E
[

min
y∈{e1,··· ,ek}

∥∥∥φγ̂(x)− Ĉy
∥∥∥2
H

]
, (2)

where φγ̂(x) = [γ̂1t(x
(1))φ>

1 (x
(1)), · · · , γ̂mt(x(m))φ>

m(x(m))]>,

e1, · · · , ek form the orthogonal bases of Rk.
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We first define a function class:

F =
{
f : x 7→ min

y∈{e1,...,ek}
‖φγ(x)−Cy‖2H

∣∣∣γ>1m = 1, γp ≥ 0,

C ∈ Hk, t(x(p)
i )t(x

(p)
j )κ̃>

p (x
(p)
i ,x

(p)
j ) ≤ b, ∀p, ∀xi ∈ X

}
,

(3)

where Hk represents the multiple kernel Hilbert space and κ̃(·, ·) is a kernel function corresponding to K̃p.
Based on Theorem 1, we derive the generalization error bound of the proposed LI-MKKM-MR by following [3].
Theorem 2: For any δ > 0, with probability at least 1− δ, the following holds for all f ∈ F :

E[f(x)] ≤ 1

n

n∑
i=1

f(xi) +
4
√
πmbG1n(γ, t)

n
+

4
√
πmbG2n(γ, t)

n

+

√
8πbk2√
n

+ 2b

√
log 1/δ

2n
,

(4)

where

G1n(γ, t) , Eβ

[
sup
γ,t

n∑
i=1

m∑
p,q=1

βipqt(x
(p)
i )t(x

(q)
i )γpγq

]
, (5)

G2n(γ, t) = Eβ

[
sup
γ,t

n∑
i=1

k∑
c=1

m∑
p=1

βicpγpt(x
(p)
i )

]
, (6)

and βipq, βicp, i ∈ {1, . . . , n}, p, q ∈ {1, . . . ,m}, c ∈ {1, . . . , k} are i.i.d. Gaussian random variables with zero mean and unit
standard deviation.

According to the analysis in [3], our local kernel alignment criterion in Eq. (8) (in the manuscript), with normalized base
kernel matrices, is an upper bound of 1

n

∑n
i=1 f(xi). As a result, by minimizing Tr(K̃β(In −HH>)), one can get a small

1
n

∑n
i=1 f(xi) for good generalization. This justifies the good generalization ability of the proposed algorithm. We provide the

detailed proof in the appendix due to space limit.

III. PROOF OF THEOREM 2
In the following, we give the detailed proof of Theorem 2. For an i.i.d. given sample {xi}ni=1, multiple kernel k-means

algorithm is to minimize an empirical reconstruction error, i.e.,

min
C

1

n

∑n

i=1
min

y∈{e1,··· ,ek}
‖φγ,t(xi)−Cy‖2H , (7)

where φγ,t(xi) = [γ1t(x
(1)
i )φ>1 (x

(1)
i ), · · · , γmt(x(m)

i )φ>m(x
(m)
i )]>, e1, · · · , ek form the orthogonal bases of Rk.

Let

R̂(C,γ, {Kp}mp=1) =
1

n

∑n

i=1
min

y∈{e1,··· ,ek}
‖φγ,t(xi)−Cy‖2H . (8)

Our proof idea is to upper bound

sup
C,γ,{Kp}mp=1

(
E
[
R̂(C,γ, {Kp}mp=1)

]
− R̂(C,γ, {Kp}mp=1)

)
, (9)

and then upper bound the term R̂(C,γ, {Kp}mp=1) by the proposed objective.
Note that in the proposed algorithms, the absent views are completed by exploiting the observed views. We assume that

the kernel mappings for both the observed views and the completed views are upper bounded, i.e., every entry of Kp, p ∈
{1, . . . ,m}, are no larger than b. Let us define a function class first:

F =
{
f : x 7→ min

y∈{e1,...,ek}
‖φγ,t(x)−Cy‖2H

∣∣∣γ>1m = 1, γp ≥ 0, C ∈ Hk, t(x(p)
i )t(x

(p)
j )κp(x

(p)
i ,x

(p)
j ) ≤ b, ∀p, ∀xi ∈ X

}
,

(10)
where Hk stands for the multiple kernel Hilbert space.

Then, Eq. (20) becomes

sup
f∈F

(
E [f(x)]− 1

n

∑n

i=1
f(xi)

)
. (11)

Let γ, the kernel matrices induced by absent views, and C = [C1, . . . ,Ck] all be learned from predefined hypothesis classes.
Note that

f(x) = min
y∈{e1,··· ,ek}

‖φγ,t(x)−Cy‖2Hk = min
{
‖φγ,t(x)−C1‖2Hk , · · · , ‖φγ,t(x)−Ck‖2Hk

}
(12)
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and for v ∈ {1, · · · , k}

‖φγ,t(x)−Cv‖2Hk =

∥∥∥∥φγ,t(x)− 1

|Cv|
∑

j∈Cv

φγ,t(xj)

∥∥∥∥2
Hk

≤ 2

(
φ>γ,t(x)φγ,t(x) +

1

|Cv|2
∑

j1,j2∈Cv

φ>γ,t(xj1)φγ,t(xj2)

)
= 2

(∑m

p=1
γ2pt

2(x(p))φ>p (x
(p))φp(x

(p)) +
1

|Cv|2
∑

j1,j2∈Cv

∑m

p=1
γ2pt(x

(p)
j1

)t(x
(p)
j2

)φ>p (x
(p)
j1

)φp(x
(p)
j2

)

)
≤ 2

(
b
∑m

p=1
γ2p +

b

|Cv|2
∑

j1,j2∈Cv

∑m

p=1
γ2p

)
≤ 2

(
b
∑m

p=1
γp +

b

|Cv|2
∑

j1,j2∈Cv

∑m

p=1
γp

)
= 4b.

(13)

As a result, we have f(x) ≤ 4b.
By exploiting McDiarmid’s concentration inequality, we have the following theorem [4].
Theorem 3: For any δ > 0, with probability at least 1− δ, the following holds for all f ∈ F :

E [f(x)]− 1

n

∑n

i=1
f(xi) ≤ 2Rn(F) + 4b

√
log 1/δ

2n
, (14)

where

Rn(F) =
1

n
E

[
sup
f∈F

∑n

i=1
σif(xi)

]
(15)

and σ1, . . . , σn are i.i.d. Rademacher random variables uniformly distributed from {−1, 1}.
Now, we are going to upper bound Rn(F). Since there is a minimization function in f , it is not easy to directly upper Rn(F).
Similar to the proof method in [1], we upper bound it by introducing Gaussian complexities:

Gn(F) =
1

n
E
[
supf∈F

∑n

i=1
βif(xi)

]
, (16)

where β1, · · · , βn are i.i.d. Gaussian random variables with zero mean and unit standard deviation.
The following two lemmas [1] will be used in our proof.
Lemma 4:

Rn(F) ≤
√
π/2Gn(F). (17)

Lemma 5: Let Gf =
∑n
i=1 βiG(xi, f) and Hf =

∑n
i=1 βiH(xi, f) be two zero mean, separable Gaussian processes. If for

all f1, f2 ∈ F ,
E
[
(Gf1 −Gf2)2

]
≤ E[(Hf1 −Hf2)

2] . (18)

Then,

E
[
supf∈F Gf

]
≤ E

[
supf∈F Hf

]
. (19)

In our case, let
Gγ,t,C =

∑n

i=1
βi min

y∈{e1,··· ,ek}
‖φγ,t(xi)−Cy‖2Hk , (20)

and

Hγ,t,C =2b
√
m
∑n

i=1

∑m

p=1
βipγ

2
pt

2(xp) +
√
8
∑n

i=1

∑k

c=1
βicφ

>
γ,t(xi)Cec + 2

∑n

i=1

∑k

c,l=1
βicle

>
c C
>Cel. (21)

we are going to prove that

Eγ
[
(Gγ1,t1(x),C1

−Gγ2,t2(x),C2
)2
]
≤ Eγ

[
(Hγ1,t1(x),C1

−Hγ2,t2(x),C2
)2
]
. (22)
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Specifically, for any f1, f2 ∈ F , we have(
min
y

∥∥φγ1,t1(x)−C1y
∥∥2
Hk −min

y

∥∥φγ2,t2(x)−C2y
∥∥2
Hk

)2

≤
(
max
y

{∥∥φγ1,t1(x)−C1y
∥∥2
Hk −

∥∥φγ2,t2(x)−C2y
∥∥2
Hk

})2

=

((∥∥φγ1,t1(x)
∥∥2
Hk −

∥∥φγ2,t2(x)
∥∥2
Hk

)
+max

y

{
2
(
φ>γ2,t2

(x)C2 − φ>γ1,t1
(x)C1

)
y + y>

(
C>1 C1 −C>2 C2

)
y
})2

≤
((∥∥φγ1,t1(x)

∥∥2
Hk −

∥∥φγ2,t2(x)
∥∥2
Hk

)
+max

y
2
(
φ>γ2,t2

(x)C2 − φ>γ1,t1
(x)C1

)
y +max

y
y>
(
C>1 C1 −C>2 C2

)
y

)2

=

(‖φγ1,t1(x)‖
2
Hk − ‖φγ2,t2(x)‖

2
Hk

)
+max

y
2

k∑
c=1

yc
(
φ>
γ2,t2

(x)C2 − φ>
γ1,t1

(x)C1

)
ec +max

y

k∑
c,l=1

ycyle
>
c

(
C>

1 C1 −C>
2 C2

)
el

2

≤ 4
(∥∥φγ1,t1(x)

∥∥2
Hk −

∥∥φγ2,t2(x)
∥∥2
Hk

)2
+ 2

(
max
y

2
∑k

c=1
yc

(
φ>γ2,t2

(x)C2 − φ>γ1,t1
(x)C1

)
ec

)2

+ 4

(
max
y

∑k

c,l=1
ycyle

>
c

(
C>1 C1 −C>2 C2

)
el

)2

= 4

(
m∑
p=1

(
γ21pt

2
1(x

(p))− γ22pt22(x(p))
)
κp(x

(p),x(p))

)2

+ 2

(
max
y

2
∑k

c=1
yc

(
φ>γ2,t2

(x)C2 − φ>γ1,t1
(x)C1

)
ec

)2

+ 4

(
max
y

∑k

c,l=1
ycyle

>
c

(
C>1 C1 −C>2 C2

)
el

)2

≤ 4mb2
m∑
p=1

(
γ21pt

2
1(x

(p))− γ22pt22(x(p))
)2

+ 8max
y

(∑k

c=1
yc

(
φ>γ2,t2

(x)C2 − φ>γ1,t1
(x)C1

)
ec

)2

+ 4max
y

(∑k

c,l=1
ycyle

>
c

(
C>1 C1 −C>2 C2

)
el

)2

≤ 4mb2
m∑
p=1

(
γ21pt

2
1(x

(p))− γ22pt22(x(p))
)2

+ 8
k∑
c=1

((
φ>γ2,t2

(x)C2 − φ>γ1,t1
(x)C1

)
ec

)2
+ 4

k∑
c,l=1

(
e>c
(
C>1 C1 −C>2 C2

)
el
)2

where the last inequality holds because (a + b + c)2 ≤ 4a2 + 2b2 + 4c2, Cauchy-Schwarz inequality, and that
∑k
c=1 yc = 1

and
∑k
c,l=1 ycyl = 1.

Thus, we have

Eβ
[(
Gγ1,t1,C1 −Gγ2,t2,C2

)2]
= Eβ

[(∑n

i=1
βi

[
min

y∈{e1,··· ,ek}

∥∥φγ1,t1(xi)−C1y
∥∥2
Hk − min

y∈{e1,··· ,ek}

∥∥φγ2,t2(xi)−C2y
∥∥2
Hk

])2
]

=
∑n

i=1

(
min

y∈{e1,··· ,ek}

∥∥φγ1,t1(xi)−C1y
∥∥2
Hk − min

y∈{e1,··· ,ek}

∥∥φγ2,t2(xi)−C2y
∥∥2
Hk

)2

≤ 4mb2
∑n

i=1

∑m

p=1

(
γ21pt

2
1(x

(p))− γ22pt22(x(p))
)2

+ 8
∑n

i=1

∑k

c=1

((
φ>γ2,t2

(x)C2 − φ>γ1,t1
(x)C1

)
ec

)2
+4
∑n

i=1

∑k

c,l=1

(
e>c
(
C>1 C1 −C>2 C2

)
el
)2

= Eβ
[
(Hγ1,t1,C1 −Hγ2,t2,C2)

2
]
. (23)

Moreover, since t(x(p)) ∈ {0, 1} and ‖Cec‖2H ≤ b for all p and c, we have

Eβ
[
2b
√
m sup

γ,t

∑n

i=1

∑m

p=1
βipγ

2
pt

2(x
(p)
i )

]
= 2b
√
mEβ

[
sup
γ,t

n∑
i=1

m∑
p=1

βip

〈
γpt(x

(p)
i ), γpt(x

(p)
i )
〉]

, 2b
√
mG1n(γ, t). (24)

Page 16 of 18Transactions on Cybernetics



SUBMITTED TO IEEE T-CYBERNETICS, MONTH JANUARY, YEAR 2021 5

Note that when all the views are observed, using Hölder’s inequality and Jensen’s inequality, we have

G1n(γ, t) = Eβ

[
sup
γ,t

n∑
i=1

m∑
p=1

βip

〈
γpt(x

(p)
i ), γpt(x

(p)
i )
〉]

= Eβ

[
sup
γ

n∑
i=1

m∑
p=1

βipγ
2
p

]

≤ Eβ

[
m∑
p=1

∣∣∣∑n

i=1
βip

∣∣∣] ≤ m√n. (25)

Similarly, we have

Eβ
[√

8 sup
γ,t,C

∑n

i=1

∑k

c=1
βicφ

>
γ,t(xi)Cec

]
=
√
8Eβ

[
sup
γ,t,C

∑n

i=1

∑k

c=1
βic

〈
[γ1t(x

(1)
i )φ>1 (x

(1)
i ), · · · , γmt(x(m)

i )φ>m(x
(m)
i )]>,Cec

〉]
≤
√
8Eβ

[
sup
γ,t,C

∑k

c=1

∣∣∣∑n

i=1
βic

〈
[γ1t(x

(1)
i )φ>1 (x

(1)
i ), · · · , γmt(x(m)

i )φ>m(x
(m)
i )]>,Cec

〉∣∣∣]
=
√
8bEβ

[∑k

c=1

∣∣∣∑n

i=1
βic

∣∣∣]
,
√
8bG2n(γ, t), (26)

where the fourth line holds because βic are symmetric random variables. Also, when all the views are observed, we have
G2n(γ, t) ≤ k

√
n. At last, we have

Eβ

2 sup
C

n∑
i=1

k∑
c,l=1

βicl 〈Cec,Cel〉

 ≤ Eβ

2b k∑
c,l=1

∣∣∣∑n

i=1
βicl

∣∣∣
 ≤ 2bk2

√
n. (27)

Combining Lemmas 4 and 5, Eqs. (20) (21), and (23), we have

Rn(F) ≤ 1

n

√
π/2E[sup

f∈F
Gγ,t,C] ≤

1

n

√
π/2E

[
sup
f∈F

Hγ,t,C

]
≤ 1

n

√
π/2

(
2b
√
mG1n(γ, t) +

√
8bG2n(γ, t) + 2bk2

√
n
)
. (28)

Put the above inequality into Theorem 3, with probability at least 1− δ, the following holds for all f ∈ F :

E[f(x)] ≤ 1

n

n∑
i=1

f(xi) +
4
√
πmbG1n(γ, t)

n
+

4
√
πmbG2n(γ, t)

n
+

√
8πbk2√
n

+ 2b

√
log 1/δ

2n
. (29)

This completes the proof.

IV. THE RESULTS ON CALTECH102-5, CALTECH102-10 AND CALTECH102-15
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Figure 1: Clustering accuracy, NMI and purity comparison with the variation of missing ratios on Caltech102-5, Caltech102-10
and Caltech102-15. For each given missing ratio, the “incomplete patterns” are randomly generated for 10 times and their
averaged results are reported.
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