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Consensus Graph Learning for Multi-view
Clustering

Zhenglai Li, Chang Tang, Xinwang Liu, Xiao Zheng, Wei Zhang, En Zhu

Abstract—Multi-view clustering, which exploits the multi-view
information to partition data into their clusters, has attracted
intense attention. However, most existing methods directly learn
a similarity graph from original multi-view features, which in-
evitably contain noises and redundancy information. The learned
similarity graph is inaccurate and is insufficient to depict the
underlying cluster structure of multi-view data. To address this
issue, we propose a novel multi-view clustering method that
is able to construct an essential similarity graph in a spectral
embedding space instead of the original feature space. Concretely,
we first obtain multiple spectral embedding matrices from the
view-specific similarity graphs, and reorganize the gram matrices
constructed by the inner product of the normalized spectral
embedding matrices into a tensor. Then, we impose a weighted
tensor nuclear norm constraint on the tensor to capture high-
order consistent information among multiple views. Furthermore,
we unify the spectral embedding and low rank tensor learning
into a unified optimization framework to determine the spectral
embedding matrices and tensor representation jointly. Finally, we
obtain the consensus similarity graph from the gram matrices via
an adaptive neighbor manner. An efficient optimization algorithm
is designed to solve the resultant optimization problem. Extensive
experiments on six benchmark datasets are conducted to verify
the efficacy of the proposed method.

Index Terms—Multi-view clustering, consensus graph learning,
weighted tensor nuclear norm.

I. INTRODUCTION

W Ith the development of information acquisition tech-
nologies, multimedia data, e.g. text, audio, image,

video, are often captured from various sources or described
by multiple features in numerous real-world applications [1],
[2]. For example, the color, textures, and edges can be utilized
to depict images in multimedia retrieval [1]. Multi-view video
can be captured from diverse view points by multiple different
cameras in the same scene and used in multi-view video
summarization [2]. This kind of data is called multi-view data
and consequently results in a battery of multi-view learning
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methods, including cross-view domain learning [3], [4], multi-
view clustering [5]–[9] and multi-view outlier detection [10],
to list a few. Obtaining the semantic information of data is
an important research topic in multimedia data mining. Multi-
view clustering aims to capture the intrinsic categorical infor-
mation of data, which is the key to analyze multimedia data,
by exploring the multi-view feature of data in an unsupervised
manner.

Spectral clustering, owning to its well-defined mathematical
framework and partition ability on arbitrary shaped clus-
ters, becomes one of the popular clustering algorithms. As
a consequence, multi-view spectral clustering methods have
been designed and applied to analyze multimedia data in
recent years [11]–[15]. The multi-view spectral clustering
methods usually contain two main steps: 1) constructing a
shared similarity graph from multi-view data; 2) conducting
the spectral clustering [16] on the similarity graph to obtain
the final partition results. Due to heterogeneous sources of
multimedia acquisition, the features of multi-view data are
of redundancy, correlation, and diversity [17]. Thus, How
to effectively explore the information of multi-view data to
construct the similarity graph and boost the clustering per-
formance becomes a critical problem in multi-view spectral
clustering tasks. To this end, Gao et al. [18] integrated the
subspace representation learning and spectral clustering into
a unified model to capture the consensus clustering structure.
The work in [19] captures complementary information among
multiple subspace representations by pursuing these represen-
tations to be diverse with a Hilbert-Schmidt independence
criterion (HSIC) [20] regularization. In [21], an exclusive
regularization is introduced to force the multiple subspace
representations as diverse as possible for efficiently capturing
the complementary information among multiple views. In [22],
clustering and local structure learning are jointly performed
to obtain an optimal graph. These methods pairwise investi-
gate the view correlations to capture consistent and diverse
information among multiple views. Unlikely, the tensor-based
multi-view clustering methods which explore the high-order
view correlations by reorganizing multiple representations
into tensor form, have achieved promising performance and
attracted much attention recently [14], [23]–[25].

Although these methods have improved the clustering per-
formance from various aspects and achieved promising results,
we observe that they learn the similarity graph in the original
feature space in which the noises and redundancy information
exist. Thus, the learned similarity graph is insufficient for
clustering tasks. To address this issue, we propose a novel
multi-view clustering method termed CGL that can construct
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Fig. 1: Framework of the proposed CGL method. Multi-view
similarity graphs {W(v)}Vv=1 are generated from multi-view
data {X(v)}Vv=1 in advance. Multi-view embedded represen-
tations {H(v)}Vv=1 are obtained via (a) spectral embedding.
To effectively capture the global consistency among multiple
views, a low rank tensor T is learned from a corrupted tensor
B, which is constructed by stacking the inner product of
normalized embedded representations {H̄(v)H̄(v)>}Vv=1 into
a third-order tensor form. We further integrate the (a) spectral
embedding and (b) low rank tensor representation learning
into a unified optimization framework to achieve mutual
promotion. Finally, the consensus graph S can be learned in
the embedded space.

an essential similarity graph in the spectral embedding space.
Fig. 1 gives the flowchart of the proposed method. We stack
multi-view gram matrices constructed by the inner product
of normalized spectral embedding matrices into a third-order
tensor. Ideally, the sample correlations are consistent across
multiple gram matrices so that the third-order tensor is low
rank. To this end, we impose a tensor low rank constraint to
capture the high-order consistent information among multiple
views. To improve the flexibility of the tensor nuclear norm,
we introduce a weighted tensor nuclear norm by assigning
different singular values with different weights. Furthermore,
we integrate the spectral embedding and low rank tensor
learning into a unified optimization framework to achieve
mutual promotion. Finally, a consistent similarity graph can be
constructed from multi-view normalized spectral embedding
matrices via an adaptive neighbor graph learning manner. The
contributions of this paper are summarized as follows,

1) We propose a novel multi-view clustering method that
performs spectral embedding and tensor representation
learning in a unified optimization framework. Compared
with original features, the obtained spectral embedding
representation is more beneficial to construct an intrinsic
similarity graph for the clustering task.

2) We introduce a weighted tensor nuclear norm to capture
the high-order consistent information among multiple
views. By adaptively assigning different weights on
singular values of the tensor, the weighting strategy
improves the flexibility of the tensor nuclear norm in
tensor low rank approximation.

3) We design an alternating optimization algorithm to solve

the proposed model. Furthermore, Extensive experi-
ments on various benchmark datasets are conducted to
verify the efficacy of the proposed method.

The rest of this paper is organized as follows. Section 2
gives a brief review of the most related work. In section 3,
we present some notations and preliminaries, including the
tensor nuclear norm and adaptive neighbor graph learning.
The details of the proposed method and designed optimization
algorithm are introduced in Section 4. Section 5 provides a
series of experimental results, discussion, and model analysis.
In Section 6, we provide a conclusion of this paper.

II. RELATED WORK

Based on the way to construct the similarity graph, the
multi-view clustering methods can be generally grouped into
two categories, i.e., subspace segmentation based methods [8],
[14], [18], [19], [21], [24]–[38] and graph based methods [22],
[39]–[48].

Subspace segmentation aims to find multiple low dimen-
sional subspaces embedded in a high dimensional space and
partition the data points into their respective subspaces. Low
rank subspace clustering (LRR) [49] and sparse subspace
clustering (SSC) [50] are two representative single view clus-
tering methods. Based on LRR and SSC, numerous multi-
view clustering methods have been proposed. For example, In
[18], the view-specific subspace representations and consensus
cluster structures are learned simultaneously. Brbić et al.
[28] simultaneously explored the low-rankness and sparsity
of multi-view subspace representations, then learned a shared
representation for clustering. To deal with large scale data,
Kang et al. [30] proposed a linear order complexity multi-view
clustering method which first learns multi-view anchor graphs
and then integrates these graphs to obtain final clustering
results. Zhang et al. [26] jointly learned the latent represen-
tation and subspace representations and combined the latent
representation learning with a neural network to improve the
generalization. Tang et al. [27] learned a joint affinity graph
from multiple views for clustering with a rank constraint and
diversity regularization. In [8], [14], [24], [25], [31], [33],
multi-view subspace representations are reorganized into a
third-order tensor and using the low rank tensor constraint
to capture the high-order view correlations.

For graph based methods, they learn the similarity graph
based on the Euclidean distance. In [39], a framework based on
standard spectral learning is proposed to capture the consistent
manifold among multiple graphs. In [40], a Laplacian rank
constrained graph is learned as the centroid of multiple graphs
with proper view confidences. In [41], a robust Markov chain
method, in which a shared low-rank transition probability ma-
trix is recovered from various transition probability matrices,
is proposed for multi-view spectral clustering. In [42], the
robust Markov chain method is extended into a tensor domain
to capture high order view correlations. By minimizing the
disagreement among multiple views, a consensus graph with
the Laplacian rank constraint is learned in [43]. The work
in [44] combines multiple graph structures to explore the
underlying data geometric property. To capture the shared
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graph structure of multiple views, Kun et al. [44] utilized
the Hadamard product to integrate the numerous graphs into
a global one for obtaining the joint edges among multiple
graphs, then, recovered the graph structure from the global
graph.

III. NOTATIONS AND PRELIMINARIES

Throughout this paper, the capital case letters, boldface
lower case letters, boldface capital letters and bold calligraphy
letters are used to denote the entries, vectors, matrices, tensors,
respectively, e.g., Xij , x, X and X . For a third-order tensor
X ∈ Rn1×n2×n3 , X (i, :, :) , X (:, j, :) and X (:, :, k) denote the
i-th horizontal, j-th lateral and k-th frontal slice of X , respec-
tively. conj(X ) and X ∗ represents the complex conjugate and
conjugate transpose of X . We use dte to denote as the nearest
integer greater than or equal to t. Tr(X) =

∑
iXii denotes

the trace of a square matrix X. Ik is used to represented
an k × k identity matrix. We use ‖X‖F =

√∑
ij Xij and

‖X‖F =
√∑

ijk X (i, j, k) to denote the Frobenius norm of
the matrix X and tensor X , respectively.

A. Tensor nuclear norm based on t-SVD

The tensor singular value decomposition (t-SVD) of a tensor
X ∈ Rn1×n2×n3 is represented as [51],

X = U ∗ S ∗ V (1)

where U ∈ Rn1×n1×n3, S ∈ Rn1×n2×n3 are two orthogonal
tensors, V ∈ Rn2×n2×n3 is an f-diagonal tensor, and ∗
represents the tensor-to-tensor product.

Then, the tensor nuclear norm (TNN) of the tensor X is
given as [51],

‖X‖∗ =

r∑
i=1

S(i, i, 1) =

r∑
i=1

n3∑
j=1

S̄(i, i, j) (2)

where r is the tensor tubal rank of X , S̄ ∈ Cn1×n2×n3 is
denoted as the result of Discrete Fourier Transformation (DFT)
on X along the 3-rd dimension, i.e., S̄ = fft(X , [ ], 3). [51]
gives the detailed definitions of those tensors and operators.

B. Adaptive neighbor graph learning

Given a data matrix X ∈ Rn×d, X = {x1,x2, ...,xn}.
The work in [52] proposes an adaptive neighbor graph learn-
ing method by considering the probabilistic neighbors. The
connect probability of two data points can be treated as the
similarity between them. The objective function of this method
can be formulated as follows:

min
si

n∑
j=1

(‖xi − xj‖22sij + γ‖Sij‖22)

s.t. sij ≥ 0, si1n = 1

(3)

where xi and xj are the i-th and j-th data points, Sij denotes
the connect probability between data points xi and xj , γ is a

balance parameter. The second term is used to avoid the trivial
solution. Eq. (3) can be rewritten as,

min
si
‖si −

dxi
2γ
‖22

s.t. sij ≥ 0, si1n = 1

(4)

where dxi is the i-th row of the distance matrix Dx with
Dx

ij = ‖xi − xj‖22. Then, the k-sparse similarity graph S
is obtained as,

Sij =
D̄x
i,k+1 − D̄x

ij

kD̄x
i,k+1 −

∑k
j=1 D̄

x
ij

(5)

where d̄xi is given by ordering dxi from small to large.

IV. PROPOSED METHOD

In this section, we present the proposed multi-view cluster-
ing model and then solve the resultant optimization problem
by designing an alternating iterative algorithm.

A. Problem formulation

Given a set of data matrices {X(v)}Vv=1,X
(v) ∈ Rn×dv ,

where dv denotes the dimension of the features in v-th view,
n is the number of data samples, V is the number of views.
Based on the adaptive neighbor graph learning manner in
Eq. (3), the work in [22] proposes a multi-view adaptive
neighbor graph learning method which learns a Laplacian
rank constrained consensus graph from multi-view data by
allocating idea view weights. The model can be formulated
as follows,

min
S

V∑
v=1

wv

n∑
i=1

n∑
j=1

‖x(v)
i − x

(v)
j ‖

2
2Sij + γ‖S‖2F

s.t. sij ≥ 0, si1n = 1, rank(Ls) = n− c,

wv =
1

2
√∑n

i=1

∑n
j=1 ‖x

(v)
i − x

(v)
j ‖22Sij

.

(6)

where wv is the view weight of v-th view, S is the consensus
similarity graph, Ls = D−S represents the Laplacian matrix
of S, D is a diagonal matrix with Dii =

∑n
j=1 Sij .

In practice, noises and redundancy information are usually
mixed in the original features. Thus, the learned consensus
similarity graph may be inaccurate in Eq. (6). To address this
issue, we learn the adaptive neighbor graph in a new low
dimensional embedding space instead of original feature space.
Based on Eq. (3), the adaptive neighbor graph can be obtained
by solving,

min
S

V∑
v=1

n∑
i=1

n∑
j=1

‖h̄(v)
i − h̄

(v)
j ‖

2
2Sij + γ‖S‖2F

s.t. sij ≥ 0, si1n = 1.

(7)

where h̄
(v)
i and h̄

(v)
j are the i-th and j-th rows of nor-

malized spectral embedding matrix H̄(v). H̄(v) is obtained
by normalizing the rows of H(v) to achieve unit Euclidean
length, i.e., h̄

(v)
i =

h
(v)
i√

h
(v)>
i

h
(v)
i

. After the normalization step, the
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normalized spectral embedding matrix contains k-dimensional
representations of the samples on a unit sphere, and Euclidean
distance based similarity can well depict the cluster structure
among samples in such a case. H(v) is the v-th view spec-
tral embedding matrix and obtained by performing spectral
clustering on view-specific similarity graph W(v) as,

max
H(v)

Tr(H(v)>A(v)H(v)) s.t. H(v)H(v)> = Ic. (8)

where A(v) is computed as D(v)−0.5W(v)D(v)−0.5, D(v) is
a diagonal matrix with D(v)

ii =
∑n
j=1W

(v)
ij .

According to Eq. (5), the obtained similarity graph S of
Eq. (7) is largely depend on the distance matrices Dh(v),
i.e., Dh(v)

ij = ‖h̄(v)
i − h̄

(v)
j ‖22 = 2 − h̄

(v)
i h̄

(v)
j . Thus, the

similarity graph learning problem is transferred into learning
robust and comprehensive distance matrices Dh(v). In Eq. (8),
the view correlations are not taken into consideration, resulting
that multiple distance matrices lack of global consistency.
By reorganizing {H̄(v)H̄(v)>}Vv=1 into a third-order tensor
B ∈ Rn×V×n, the sample correlations are consistent across
multiple views so that the tensor B should be low rank. To
this end, we formulate the optimization goal as,

min
H(v),T

− λ
V∑
v=1

Tr(H(v)>A(v)H(v)) +
1

2
‖B − T ‖2F + τ‖T ‖∗

s.t. H(v)>H(v) = Ic.
(9)

where λ is a balance parameter, τ is singular values threshold,
T ∈ Rn×V×n is a tensor. In Eq. (9), the first term is the
spectral embedding term. The second and third terms are used
to capture the primary component of tensor B and regularize
multiple gram matrices {H̄(v)H̄(v)>}Vv=1 to be consistent with
each other. The low rank tensor T can be obtained by using the
tensor singular value thresholding (t-SVT) operator as follows
[51],

Dτ (B) = U ∗ Sτ ∗ V∗ (10)

where Sτ = ifft((S̄ − τ)+, [ ], 3), t+ = max(t, 0).
In Eq. (10), the singular values are equally shrunk with the

same singular values threshold τ . However, the larger singular
values quantify the information of the underlying principal
directions and should be less shrunk. The over-penalization of
large singular values would obtain a biased solution and be not
conducive to mining the primary components of the tensor.
Therefore, we introduce a weighted tensor nuclear norm to
improve the flexibility of the tensor nuclear norm as follows,

‖T ‖w,∗ =
r∑
i=1

n∑
j=1

w
(j)
i S̄(i, i, j) (11)

where w(j)
i is a singular value weight.

Finally, we formulate the final objective function as follows,

min
H(v),T

− λ
V∑
v=1

Tr(H(v)>A(v)H(v)) +
1

2
‖B − T ‖2F + ‖T ‖w,∗

s.t. H(v)>H(v) = Ic.
(12)

By solving the problem in Eq. (12), the consensus graph
S can be learned from the gram matrices {H̄(v)H̄(v)>}Vv=1

via Eq. (7). In the proposed CGL method, the distribution
of noises and redundant information are treated as diverse
among multiple views. By capturing the global consistency
among multiple views, the noise and redundant information
can be effectively filtered out. Thus, the learned embedded
representation is more beneficial to construct an intrinsic
similarity graph for the clustering task.

B. Optimization algorithm

To solving the problem in Eq. (12), we design an opti-
mization algorithm in an alternate iteration manner. Thus, the
problem can be transformed into two subproblems, i.e., H(v)-
subproblem and T -subproblem.
H(v)-subproblem: We first fix variable T , then unfold two

tensors B and T into matrix form. By dropping other unrelated
terms, Eq. (12) can be rewritten as,

min
H(v)

− λTr(H(v)>A(v)H(v)) +
1

2
‖H̄(v)H̄(v)> −T(v)‖2F

s.t. H(v)>H(v) = Ic.
(13)

where T(v) is the v-th lateral slice of tensor T , i.e., T(v) =
T (:, v, :). Eq. (13) can be further rewritten as,

min
H(v)

− λTr(H(v)>A(v)H(v)) +
1

2
Tr(H̄(v)H̄(v)>H̄(v)H̄(v)>)

− 1

2
Tr
(
H̄(v)H̄(v)>)(T(v) + T(v)>)

)
s.t. H(v)>H(v) = Ic.

(14)

Let P(v) ∈ Rn×n be a diagonal matrix. Its elements are
obtained as

P
(v)
ij =


1√

h
(v)>
i h

(v)
i

, if i = j

0, otherwise
(15)

Then, we have the following equation,

H̄(v) = P(v)H(v) (16)

By integrating Eq. (16) into Eq. (14), the optimization
problem can be further rewritten as,

max
H(v)

Tr(H(v)>G(v)H(v)) s.t. H(v)>H(v) = Ic. (17)

where G(v) = λA(v) + 1
2P

(v)(T(v) + T(v)>)P(v) −
1
2P

(v)H̄(v)H̄(v)>P(v). The optimal solution of H(v) can be
obtain by taking the eigenvectors corresponding to the c largest
eigenvalues of G(v).
T -subproblem: when we fix {H(v)}Vv=1 and drop other

unrelated term, Eq. (12) can be rewritten as,

min
T

1

2
‖B − T ‖2F + ‖T ‖w,∗ (18)
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For a tensor X ∈ Rn1×n2×n3 , we have ‖X‖F =
1
√
n3
‖X̄ ‖F . Then, Eq. (18) is equivalent to

min
T̄ (:,:,j)

1

n

n∑
j=1

(
1

2
‖B̄(:, :, j)− T̄ (:, :, j)‖2F + ‖T̄ (:, :, i)‖w,∗)

(19)
where T̄ (:, :, j) and B̄(:, :, j) are the j-th slices of T̄ and B̄,
respectively. T̄ and B̄ denote the result of DFT on T and B
along the 3-rd dimension, i.e., T̄ = fft(T , [ ], 3) and B̄ =
fft(B, [ ], 3).

By using the reweighting strategy in [53], T̄ (:, :, j) has a
close-form solution,

T̄ (:, :, j) = Ū(:, :, j) ∗ ˜̄S(:, :, j) ∗ V̄(:, :, j)∗ (20)

where B̄(:, :, j) = Ū(:, :, j) ∗ S̄(:, :, j) ∗ V̄(:, :, j)∗ is the SVD
of B̄(:, :, j), ˜̄S(:, :, j) is obtained as,

˜̄S(i, i, j) =

{
0, if c2 < 0
c1+
√
c2

2 , if c2 ≥ 0
(21)

where c1 = S̄(i, i, j) − ε, c2 = (S̄(i, i, j) + ε)2 − 4C. ε is
a small enough positive value to make the inequality ε <
min(

√
C, C
S̄(i,i,j)

) hold, C is a regularization parameter to set

the weight w(j)
i , i.e., w(j)

i = C
S̄(i,i,j)+ε

.
1 and 2, respectively. The computation complexity and

empirical convergence analysis are given in the next section.

Algorithm 1: Solution to Eq. (18)

Input: Tensor B ∈ Rn×V×n and regularization
parameter C;

Output: Tensor T ∈ Rn×V×n;
1 Compute B̄ = fft(B, [ ], 3);
2 Perform reweighted strategy on each frontal slice of B̄

by;
3 for j = 1, ..., dn+1

2 e do
4 Ū(:, :, j) ∗ S̄(:, :, j) ∗ V̄(:, :, j)∗ = SVD(B̄(:, :, j));
5 Obtain ˜̄S(:, :, j) via Eq. (21);
6 T̄ (:, :, j) = Ū(:, :, j) ∗ ˜̄S(:, :, j) ∗ V̄(:, :, j)∗;
7 end
8 for j = dn+1

2 e+ 1, ..., n do
9 T̄ (:, :, j) = conj(T̄ (:, :, n− j + 2));

10 end
11 Compute T̄ = ifft(T̄ , [ ], 3).

We summarize the weighted tensor nuclear norm minimiza-
tion of the T -subproblem and whole optimization procedure
of the proposed method in Algorithm

C. Discussion

In this section, some discussions are given to further under-
stand the proposed method.

min
T

1

2
‖B − T ‖2F + ‖T ‖w,∗ (22)

Algorithm 2: Consensus graph learning for multi-view
clustering

Input: Multi-view data {X(v)}Vv=1, nearest neighbor k,
balance parameter λ, regularization parameter
C, clustering number c and ε = 0.0001;

Output: Consensus graph S and clustering results Y;
1 Initialize t = 1, {H(v) = 0}Vv=1, {H̄(v) = 0}Vv=1,
{P(v) = 0}Vv=1 {T (:, :, j) = 0}nj=1 ;

2 Compute view-specific graphs {W(v)}Vv=1 via Eq. (3);
3 Compute {A(v)}Vv=1;
4 while not converged do
5 Update {H(v)}Vv=1 via Eq. (17);
6 Update {P(v)}Vv=1 and {H̄(v)}Vv=1 via Eq. 15 and

Eq. 16 , respectively;
7 Obtain B = Φ(H̄(1)H̄(1)>, ..., H̄(V )H̄(V )>) ;
8 Update T via Algorithm 1;
9 Compute objective function value obj(t);

10 Check convergence condition |obj(t)−obj(t−1)|
obj(t−1) < ε;

11 t = t+ 1;
12 end
13 Compute consensus graph S via Eq. (7);
14 Employ the spectral clustering on the obtained

consensus similarity graph S;
15 return the consensus graph S, clustering results Y;

In Eq. (22), the vth slice of tensor B, i.e. B(:, v, :), represents
the sample dissimilarities of vth view of multi-view data.
Due to the noises and redundancy information mixed in
original features, the obtained sample dissimilarities in each
slice of tensor B may be inaccurate. And tensor B can be
regarded as a degraded tensor with noise information. Eq.
(22) is the tensor robust principal component analysis [51]
with a weighted tensor nuclear norm. It aims to capture the
principal components of a tensor and can be utilized to filter
the noise sample dissimilarities and reduce view redundancy.
Subsequently, the sample correlations of multi-view data can
be depicted more accurate by the learned each slice of tensor
T than that of tensor B.

max
H(v)

Tr(H(v)>G(v)H(v)) s.t. H(v)>H(v) = Ic. (23)

where G(v) = λA(v) + 1
2P

(v)(T(v) + T(v)>)P(v) −
1
2P

(v)H̄(v)H̄(v)>P(v). A(v) is the vth view normalized sim-
ilarity graph which is obtained from the vth original fea-
tures. Consequently, it may contain some inaccurate sample
correlations. By combining T(v) with A(v), the inaccurate
sample correlations can be suppressed in the obtained matrix
G(v). Then, the process of SVD in Eq. 23 transforms the
representations of multi-view data {X(v)} from the original
space to an embedded space where the cluster properties
are enhanced in this space. Thus, the obtained embedded
features are of better discriminability and are more beneficial
to construct an intrinsic similarity graph for the clustering task.
Furthermore, the clustering ability of the learned embedded
features will be verified in the next section.
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V. EXPERIMENTS

In this section, we evaluate the clustering performance of the
proposed method on six widely used multi-view benchmark
datasets and conduct a series of model analysis.

A. Experimental settings

1) Datasets: We adopt six benchmark datasets in the ex-
periments. The details of the datasets are as follows,

MSRCV1: It consists of 210 scene recognition images
belonging to seven classes. Each image is represented by six
different feature sets, i.e., 256 dimension LBP, 100 dimension
HOG, 512 dimension GIST, 48 dimension Color Moment,
1302 dimension CENTRIST, and 210 dimension SIFT.

ORL1: It contains 400 face images of 40 individuals under
different lighting, times, and facial details. Three feature sets,
including 4096 dimension intensity, 3304 dimension LBP, and
6750 dimension Gabor are utilized.

20newsgroups2: It is a newsgroups documents dataset con-
sisting of five classes, 500 documents in total. Three different
feature sets are generated by three pre-processed methods.

100leaves3: This set contains 1600 samples of 100 plant
species. Shape descriptor, texture histogram and fine scale
margin are extracted to depict each sample.

COIL20 [54]: It consists of 1400 images of 20 classes. For
each image, the 1024 dimension intensity, 3304 dimension
LBP and 6750 dimension Gabor features are extracted.

handwritten: It consists of 2000 handwritten digital images
of 0 to 9. Each sample is represented in terms of six different
feature sets, i.e., 76 dimension FOU, 216 dimension FAC, 64
dimension KAR, 240 dimension Pix, 47 dimension ZER, and
six MOR.

2) Compared methods: To verify the superiority of the
proposed method, two single view baselines and seven recently
proposed multi-view clustering methods are used in the exper-
iments. In detail, the compared methods are as follows,

SC [16]: Spectral clustering.
LRR [49]: This method constructs the subspace represen-

tation matrix by using nuclear norm constraint.
MLAN [22]: This method automatically captures the view

weights and simultaneously learns a Laplacian rank con-
strained graph for clustering

MCGC [43]: This method employes a co-regularization
term to reduce the disagreements among multiple views.
Meanwhile, it learns a Laplacian rank constrained consensus
graph from multiple spectral embedding matrices.

GMC [55]: This method integrates adaptive neighbor graph
learning and multiple graphs fusing into a unified framework
to learn a Laplacian rank constrained graph for clustering.

SM2SC [56]: This method extracts intrinsic components
from view-specific subspace representations by using a vari-
able splitting scheme and a multiplicative decomposition
scheme.

1http://www.uk.research.att.com/facedatabase. html
2http://lig-membres.imag.fr/grimal/data.html
3https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+

species+leaves+data+set

LT-MSC [24]: This method learns low rank tensor represen-
tation by stacking multiple subspace representation into tensor
form and making the three unfolding modes of the tensor be
low rank.

t-SVD-MS [25]: This method stacks multiple subspace
representations into tensor form and learn low rank tensor
representation with a t-SVD based tensor nuclear norm.

ETLMSC [42]: This method integrates multiple transition
probability matrices into a tensor and learns essential informa-
tion from the tensor with a t-SVD based tensor and a l2,1 norm.
Then, It conducts the Markov chain-based spectral clustering
on the learned essential transition probability matrix to obtain
the final clustering results.

3) Parameter settings and evaluation metrics: SC and LRR
are two single view clustering baselines. We perform them on
each single view and report the best clustering performance.
For SC, the similarity graph is obtain via Eq. (3) with nearest
neighbor k = 15. For LRR, we select the parameter from
[10−3, 10−2, ..., 102, 103]. For MLAN and GMC, the nearest
neighbors are set as k = 9 and k = 15 as the settings
in their paper. For MCGC, the nearest neighbor is set as
k = 15 and a regularization parameter is chosen from
[0.6 : 5 : 100]. For SM2SC, we choose three regularization
parameters from [0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 1, 10, 40, 100],
[0.1, 0.5, 1, 1.5, 2] and [0.05, 0.1, 0.4, 1, 5], respectively. For
LT-MSC, we select a regularization parameter from [0 :
0.05 : 0.5, 10 : 10 : 100]. For t-SVD-MS and ETLMSC, the
regularization parameters are set within the range [0.1 : 0.1 : 2]
and [10−4 : 10−4 : 10−3, 10−3 : 10−3 : 10−2, ..., 101 :
101 : 102], respectively. For our proposed CGL method,
the nearest neighbor is set as k = 15. two parameters λ
and C searched from [1, 5, 10, 50, 100, 500, 1000, 5000] with
grid search strategy. For a fair comparison, we repeat each
experiment 20 times and report mean values and standard
deviations.

In addition, seven evaluation metrics, including accuracy
(ACC), normalized mutual information (NMI), adjusted Rand
index (ARI), F-score, Precision, Recall, and Purity are em-
ployed to evaluate the performance. Note that higher values
of these metrics indicate the better performance of clustering
results.

B. Experimental results

1) Clustering performance: The clustering performance
measured by seven evaluation metrics of all methods on six
benchmark datasets is reported in TABLE I. From the results,
we obtain the following observations:

(1) The clustering results of our proposed method signifi-
cantly outperform that of the compared methods. Taking the
MSRCV1 dataset as an example, it exceeds the second best
SM2SC 5.24, 10.66, and 5.24 percent in terms of ACC, NMI,
and Purity, respectively. This validates the advantages and
effectiveness of our proposed method. The primary reason are
that i) the proposed method learns a similarity graph based on
the spectral embedding matrices, and ii) simultaneously con-
ducting spectral embedding and tensor representation learning
can obtain superior embedded features.
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TABLE I: Clustering performance on six datasets. The highest and the second highest values under each metric are bolded
and underlined, respectively.

Datasets Methods F-score Precision Recall NMI AR ACC Purity

MSRCV1

SC 0.6684±0.0000 0.6354±0.0000 0.7051±0.0000 0.7109±0.0000 0.6118±0.0000 0.7548±0.0024 0.7810±0.0000
LRR 0.5434±0.0099 0.5354±0.0093 0.8914±0.0882 0.5561±0.0055 0.4686±0.0114 0.6793±0.0035 0.6810±0.0027

MLAN 0.6858±0.0000 0.6111±0.0000 0.7813±0.0000 0.7629±0.0000 0.6278±0.0000 0.7238±0.0000 0.7905±0.0000
MCGC 0.6857±0.0000 0.6602±0.0000 0.7468±0.0000 0.7375±0.0000 0.6328±0.0000 0.7571±0.0000 0.8048±0.0000
GMC 0.7997±0.0000 0.7856±0.0000 0.8144±0.0000 0.8200±0.0000 0.7668±0.0000 0.8952±0.0000 0.8952±0.0000

SM2SC 0.8027±0.0003 0.7994±0.0002 0.8060±0.0004 0.8001±0.0025 0.7708±0.0003 0.8952±0.0000 0.8952±0.0000
LT-MSC 0.7376±0.0006 0.7270±0.0011 0.7484±0.0000 0.7560±0.0002 0.6946±0.0007 0.8429±0.0000 0.8429±0.0000

t-SVD-MS 0.7076±0.0013 0.6843±0.0019 0.7366±0.0002 0.7347±0.0015 0.6584±0.0015 0.8095±0.0000 0.8095±0.0000
ETLMSC 0.6152±0.0071 0.5969±0.0068 0.6347±0.0075 0.6257±0.0061 0.5510±0.0083 0.7376±0.0046 0.7567±0.0046

CGL 0.8945±0.0000 0.8914±0.0000 0.8975±0.0000 0.8883±0.0000 0.8774±0.0000 0.9476±0.0000 0.9476±0.0000

ORL

SC 0.7446±0.0182 0.6998±0.0248 0.7960±0.0149 0.9141±0.0059 0.7383±0.0187 0.7950±0.0240 0.8339±0.0156
LRR 0.7657±0.0175 0.7169±0.0250 0.8220±0.0121 0.9255±0.0054 0.7599±0.0180 0.8151±0.0188 0.8476±0.0119

MLAN 0.3544±0.0000 0.2347±0.0000 0.7233±0.0000 0.8312±0.0000 0.3316±0.0000 0.6850±0.0000 0.7350±0.0000
MCGC 0.5644±0.0000 0.4780±0.0000 0.7606±0.0000 0.8656±0.0000 0.5525±0.0000 0.7200±0.0000 0.7800±0.0000
GMC 0.3599±0.0000 0.2321±0.0000 0.8011±0.0000 0.8571±0.0000 0.3367±0.0000 0.6325±0.0000 0.7150±0.0000

SM2SC 0.6419±0.0228 0.6091±0.0255 0.7167±0.0152 0.8539±0.0096 0.6332±0.0234 0.7624±0.0221 0.7813±0.0199
LT-MSC 0.7663±0.0258 0.7203±0.0310 0.8188±0.0209 0.9207±0.0092 0.7605±0.0265 0.8162±0.0193 0.8481±0.0175

t-SVD-MS 0.7679±0.0220 0.7303±0.0226 0.8216±0.0241 0.9221±0.0068 0.7623±0.0225 0.8209±0.0192 0.8460±0.0154
ETLMSC 0.7024±0.0323 0.6639±0.0318 0.7459±0.0358 0.8903±0.0152 0.6951±0.0331 0.7734±0.0239 0.8021±0.0235

CGL 0.8584±0.0060 0.8446±0.0074 0.8727±0.0050 0.9454±0.0021 0.8551±0.0061 0.8996±0.0051 0.9074±0.0038

20newsgroups

SC 0.6078±0.0000 0.5276±0.0000 0.7167±0.0000 0.5643±0.0000 0.4915±0.0000 0.6600±0.0000 0.7040±0.0000
LRR 0.6295±0.0002 0.6163±0.0001 0.9840±0.0000 0.5464±0.0013 0.5353±0.0002 0.7840±0.0000 0.7840±0.0000

MLAN 0.5237±0.0000 0.4222±0.0000 0.6895±0.0000 0.5248±0.0000 0.3682±0.0000 0.5900±0.0000 0.6500±0.0000
MCGC 0.6170±0.0000 0.5079±0.0000 0.7859±0.0000 0.6495±0.0000 0.4954±0.0000 0.6620±0.0000 0.7060±0.0000
GMC 0.9643±0.0000 0.9642±0.0000 0.9643±0.0000 0.9392±0.0000 0.9554±0.0000 0.9820±0.0000 0.9820±0.0000

SM2SC 0.9683±0.0001 0.9680±0.0001 0.9685±0.0000 0.9511±0.0003 0.9604±0.0001 0.9840±0.0000 0.9840±0.0000
LT-MSC 0.9799±0.0000 0.9798±0.0000 0.9801±0.0000 0.9652±0.0000 0.9750±0.0000 0.9900±0.0000 0.9900±0.0000

t-SVD-MS 0.9799±0.0000 0.9798±0.0000 0.9801±0.0000 0.9652±0.0000 0.9750±0.0000 0.9900±0.0000 0.9900±0.0000
ETLMSC 0.3699±0.0030 0.3315±0.0064 0.9730±0.0008 0.2523±0.0020 0.1881±0.0191 0.4189±0.0046 0.4525±0.0024

CGL 0.9721±0.0000 0.9721±0.0000 0.9722±0.0000 0.9513±0.0000 0.9652±0.0000 0.9860±0.0000 0.9860±0.0000

100leaves

SC 0.5494±0.0085 0.5222±0.0096 0.5797±0.0084 0.8283±0.0032 0.5449±0.0086 0.6651±0.0081 0.6871±0.0067
LRR 0.3572±0.0119 0.3406±0.0121 0.3755±0.0121 0.7285±0.0057 0.3508±0.0120 0.4979±0.0135 0.5294±0.0125

MLAN 0.3626±0.0000 0.2533±0.0000 0.6378±0.0000 0.8285±0.0000 0.3539±0.0000 0.6388±0.0000 0.6694±0.0000
MCGC 0.5637±0.0000 0.5150±0.0000 0.6787±0.0000 0.8382±0.0000 0.5592±0.0000 0.7025±0.0000 0.7262±0.0000
GMC 0.5042±0.0000 0.3521±0.0000 0.8874±0.0000 0.9292±0.0000 0.4974±0.0000 0.8237±0.0000 0.8506±0.0000

SM2SC 0.6461±0.0220 0.5848±0.0329 0.7330±0.0139 0.8871±0.0054 0.6423±0.0223 0.7809±0.0207 0.8057±0.0171
LT-MSC 0.6433±0.0174 0.6129±0.0186 0.6773±0.0164 0.8699±0.0068 0.6397±0.0176 0.7339±0.0189 0.7595±0.0158

t-SVD-MS 0.6707±0.0134 0.6388±0.0157 0.7059±0.0115 0.8829±0.0049 0.6674±0.0136 0.7542±0.0118 0.7788±0.0107
ETLMSC 0.7164±0.0152 0.6742±0.0183 0.7670±0.0153 0.9065±0.0063 0.7135±0.0154 0.7756±0.0183 0.8001±0.0162

CGL 0.9431±0.0063 0.9276±0.0108 0.9590±0.0030 0.9818±0.0013 0.9425±0.0063 0.9625±0.0070 0.9646±0.0054

COIL20

SC 0.8016±0.0005 0.7711±0.0006 0.8437±0.0102 0.9106±0.0057 0.7909±0.0006 0.8389±0.0002 0.8597±0.0002
LRR 0.7684±0.0069 0.7394±0.0150 0.8000±0.0067 0.8688±0.0041 0.7558±0.0074 0.8010±0.0079 0.8224±0.0042

MLAN 0.8110±0.0000 0.7213±0.0000 0.9261±0.0000 0.9405±0.0000 0.7999±0.0000 0.8424±0.0000 0.8736±0.0000
MCGC 0.7282±0.0000 0.6808±0.0000 1.0000±0.0000 0.8867±0.0000 0.7130±0.0000 0.7764±0.0000 0.8139±0.0000
GMC 0.7997±0.0000 0.6952±0.0000 0.9411±0.0000 0.9415±0.0000 0.7876±0.0000 0.8035±0.0000 0.8465±0.0000

SM2SC 0.7637±0.0255 0.7028±0.0312 0.8804±0.0335 0.9077±0.0123 0.7497±0.0272 0.7684±0.0352 0.8155±0.0224
LT-MSC 0.7183±0.0071 0.6881±0.0140 0.7528±0.0056 0.8423±0.0030 0.7030±0.0076 0.7710±0.0047 0.7840±0.0045

t-SVD-MS 0.7273±0.0185 0.7010±0.0238 0.7559±0.0143 0.8428±0.0089 0.7126±0.0196 0.7727±0.0180 0.7882±0.0160
ETLMSC 0.7410±0.0217 0.7311±0.0216 0.7512±0.0223 0.8422±0.0105 0.7274±0.0229 0.7788±0.0223 0.7911±0.0220

CGL 0.8440±0.0005 0.8238±0.0004 0.8653±0.0005 0.9193±0.0000 0.8357±0.0005 0.8596±0.0003 0.8832±0.0003

handwritten

SC 0.9225±0.0000 0.9221±0.0000 0.9229±0.0000 0.9163±0.0000 0.9139±0.0000 0.9600±0.0000 0.9600±0.0000
LRR 0.7290±0.0001 0.7018±0.0001 0.7585±0.0001 0.7679±0.0000 0.6978±0.0001 0.7795±0.0001 0.8105±0.0000

MLAN 0.9475±0.0000 0.9468±0.0000 0.9482±0.0000 0.9400±0.0000 0.9417±0.0000 0.9735±0.0000 0.9735±0.0000
MCGC 0.8970±0.0000 0.8948±0.0000 0.8991±0.0000 0.8926±0.0000 0.8856±0.0000 0.9465±0.0000 0.9465±0.0000
GMC 0.8661±0.0000 0.8268±0.0000 0.9093±0.0000 0.9057±0.0000 0.8505±0.0000 0.8820±0.0000 0.8820±0.0000

SM2SC 0.9252±0.0000 0.9244±0.0000 0.9259±0.0000 0.9163±0.0000 0.9169±0.0000 0.9615±0.0000 0.9615±0.0000
LT-MSC 0.8195±0.0140 0.8167±0.0145 0.8223±0.0135 0.8346±0.0086 0.7995±0.0156 0.8982±0.0104 0.8982±0.0104

t-SVD-MS 0.8608±0.0039 0.8577±0.0045 0.8640±0.0034 0.8653±0.0027 0.8454±0.0044 0.9255±0.0025 0.9255±0.0025
ETLMSC 0.7629±0.0021 0.7604±0.0021 0.7654±0.0022 0.7835±0.0020 0.7366±0.0024 0.8635±0.0012 0.8635±0.0012

CGL 0.9554±0.0000 0.9549±0.0000 0.9559±0.0000 0.9491±0.0000 0.9505±0.0000 0.9775±0.0000 0.9775±0.0000
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Fig. 2: Visual comparisons of the similarity matrices learned by different methods on ORL dataset.
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Fig. 3: Visual comparisons of the similarity matrices learned by different methods on 100leaves dataset.

(2) The proposed method performs better than three graph
based multi-view clustering methods (MLAN, GMC, and
ETLMSC). MLAN, GMC, and ETLMSC learn the similarity
graphs on the original features, which consist of noises and
redundancy information. The learned similarity graphs may be
insufficient for revealing the essential cluster structures. The
proposed method achieves better performance than the MCGC
method, which learns the consensus similarity graph in the
spectral embedding space and pairwise investigates the view
correlations.

(3) The proposed method achieves better results than three
tensor based multi-view clustering methods (LT-MSC, t-SVD-
MS, and ETLMSC) in most cases. It indicates that constructing
the similarity graph in the embedding space can achieve better
performance than that in the original feature space.

(4) Compared with three subspace based multi-view cluster-
ing methods (LT-MSC, t-SVD-MS, and SM2SC), the proposed
method also achieve better results in most cases. LT-MSC and
t-SVD-MS perform better than the proposed method on the
20newsgroups dataset. The reason may be that the l2,1 norm

removals of outliers from data and subspace segmentation may
favor this dataset.

(5) SC and LRR are two strong baselines, and usually
obtain comparable or even better performance than some
other compared methods. Nonetheless, our proposed method
significantly outperforms the two baselines on all datasets,
which demonstrates the superiority of our proposed method.

2) Learned similarity graph: We visualize the similarity
graphs 4 learned by two single view clustering baselines, seven
multi-view clustering competitors, and the proposed method
on ORL and 100leaves datasets in Fig. 2 and 3. Compared with
other methods, the similarity graphs of the proposed method
have clearer and completer block-diagonal structures. It indi-
cates that the similarity graphs of the proposed method possess
more correct node connections and are more appropriate for
the clustering tasks.

4As for the ETLMSC method, we visualize the final transition probability
matrix.
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3) Learned embedded features: In this section, we conduct
one experiment to verify that the learned spectral embedding
features are more beneficial to construct an intrinsic similarity
graph for the clustering task than the original features. We
construct view-specific and average similarity graphs on the
original features and embedded ones learned in different
iterations via Eq. 3 and Eq. 5, respectively. Then, we perform
the spectral clustering on the similarity graphs and report the
clustering performance measured by ACC in TABLE II. As
can be seen, the learned embedded features can be used to
construct more intrinsic similarity graphs (both view-specific
and average similarity graphs) than the original ones with the
iterations increasing. This strongly indicates the effectiveness
of the learned embedded features.
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Fig. 4: Illustration of the effect of two parameters of the
proposed method (i.e., λ and C) on the clustering performance
in terms of ACC.

C. Model analysis

1) Parameter sensitivity: The proposed method consists of
three parameters, i.e., k, λ and C. In our experiments, the
parameter k is set as k = 15 for all datasets. Thus, we only
need to tune two parameters. λ and C are chosen from the

same range [1, 5, 10, 50, 100, 500, 1000, 5000] with grid search
strategy. Fig. 4 gives the clustering performance in terms of
ACC with different combinations of parameters λ and C on six
datasets. The proposed method can achieve stable performance
on MSRCV1, ORL, 100leaves, and handwritten datasets with
parameter perturbations. In contrast, the performance of the
proposed method is sensitive to different parameter combina-
tions on 20newsgroups and COIL20 datasets.

2) Computation complexity and empirical convergence
analysis: The computation complexity of the proposed method
mainly lies in updating variables {H(v)}Vv=1 and T . For updat-
ing {H(v)}Vv=1, it takes O(n2c) to compute the c eigenvectors
corresponding to the c largest eigenvalues of a n × n matrix
in each iteration for each view. As for updating T , it spends
O(n2V log(n)) and O(n2V 2) for the FFT/IFFT operation
and conduting SVD on n × V matrices, respectively. For
solving Eq. (3) and spectral clustering, it costsO(nlog(n)) and
O(n2c), respectively. Thus, the total computation complexity
is O(tV n2c+ tn2V log(n) + tn2V 2 + nlog(n) + n2c), where
t is the number of iterations. Furthermore, we compare the
time cost of the proposed method with that of other methods
on the six benchmark datasets. The results of running time
are reported in TABLE IV. Although the proposed method is
not the most efficient one, it runs faster than some compared
methods such as LT-MSC, t-SVD-MS, and ETLMSC on most
datasets. In addition, the proposed method can obtain better
results as discussed in previous sections.

To study the empirical convergence of the proposed method,
we plot the convergence curves of the proposed method on
six datasets in Fig. 5. We can see that the objective function
values can reach a stable value within 100 iterations. Thus,
the proposed method possesses a stable convergence.

3) The effectiveness of the weighted tensor nuclear norm:
To investigate the effectiveness of the proposed weight tensor
nuclear norm, we carry out two models in Eq. (7) and Eq.
(9) and term them as CGL-no-LRT and CGL-TNN. For CGL-
no-LRT, it directly uses the spectral embedding matrices to
generate the consensus similarity graph without the procedure
of low rank tensor representation learning. For CGL-TNN, it
utilizes the nuclear tensor norm to capture consistency among
multiple views. Two regularization parameters λ and τ are also
searched in the same range [1, 5, 10, 50, 100, 500, 1000, 5000].
TABLE III gives the clustering performance of CGL-no-LRT,
CGL-TNN, and the proposed CGL method in terms of seven
evaluation metrics on six datasets. On handwritten dataset,
CGL-no-LRT, CGL-TNN, and CGL achieve similar clustering
performances. On rest datasets, CGL-TNN shows better results
than CGL-no-LRT and CGL. It indicates the effectiveness of
the proposed weight tensor nuclear norm.

VI. CONCLUSION

In this paper, a graph learning method is proposed to con-
duct clustering by simultaneously learning spectral embedding
matrices and low rank tensor representation. In the proposed
method, we stack multi-view gram matrices constructed by the
inner product of normalized spectral matrices into a third-order
tensor and employ the tensor low rank approximation to cap-
ture the global consistent information among multiple views.
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TABLE II: The clustering performance measured by ACC on some intermediate representations of six different datasets.

Datasets Similarity graphs Original features Embedded features
t=1 t=20 t=40 t=60 t=80 t=100

MSRCV1 View-specific

1 0.7548 0.7524 0.8667 0.8667 0.8714 0.8667 0.8667
2 0.2852 0.2762 0.2714 0.2714 0.2714 0.2714 0.2667
3 0.7143 0.7095 0.7381 0.7333 0.7333 0.7381 0.7381
4 0.6374 0.6236 0.8429 0.8762 0.8762 0.8714 0.8667
5 0.6183 0.6048 0.7095 0.8000 0.7952 0.8000 0.8000
6 0.4205 0.4286 0.4374 0.4652 0.4588 0.4583 0.4583

Average 0.8143 0.8952 0.9286 0.9381 0.9381 0.9429 0.9476

ORL View-specific
1 0.6465 0.6485 0.8764 0.8864 0.8981 0.8985 0.8986
2 0.7950 0.7949 0.8773 0.8845 0.8965 0.9006 0.9004
3 0.6943 0.6988 0.8796 0.8811 0.8859 0.8885 0.8870

Average 0.7598 0.8251 0.8771 0.8821 0.8943 0.8991 0.8996

20NGs View-specific
1 0.6320 0.6300 0.9720 0.9660 0.9660 0.9700 0.9640
2 0.6600 0.6520 0.9780 0.9760 0.9740 0.9640 0.9480
3 0.3259 0.3620 0.9480 0.9200 0.9280 0.9560 0.9580

Average 0.9640 0.6300 0.9840 0.9860 0.9880 0.9860 0.9720

COIL20 View-specific
1 0.7903 0.4433 0.5083 0.6589 0.6864 0.8542 0.8507
2 0.7842 0.6131 0.5694 0.5435 0.6981 0.8368 0.8340
3 0.7506 0.5896 0.5294 0.4879 0.5528 0.8667 0.8625

Average 0.8389 0.5057 0.4932 0.5009 0.6263 0.8438 0.8590

100leaves View-specific
1 0.6651 0.6730 0.7074 0.7188 0.7213 0.7252 0.7283
2 0.3694 0.3798 0.3972 0.3966 0.4040 0.4037 0.4008
3 0.5384 0.5529 0.5845 0.5912 0.5958 0.5998 0.6067

Average 0.8797 0.9503 0.9632 0.9654 0.9644 0.9681 0.9658

handwritten View-specific

1 0.9600 0.9570 0.9680 0.9730 0.9781 0.9785 0.9775
2 0.7185 0.7160 0.8140 0.8860 0.8830 0.8845 0.8835
3 0.7506 0.7485 0.9680 0.9745 0.9735 0.9775 0.9775
4 0.6638 0.6145 0.8405 0.8810 0.8350 0.8795 0.8865
5 0.9480 0.9555 0.9695 0.9735 0.9715 0.9765 0.9775
6 0.4432 0.4756 0.4730 0.5450 0.5590 0.5625 0.5715

Average 0.9715 0.9760 0.9750 0.9750 0.9775 0.9785 0.9780

TABLE III: Clustering performance on six datasets. The highest and the second highest values under each metric are bolded
and underlined, respectively.

Datasets Methods F-score Precision Recall NMI AR ACC Purity

MSRCV1
CGL-no-LRT 0.8058±0.0000 0.7949±0.0000 0.8171±0.0000 0.8224±0.0000 0.7740±0.0000 0.8952±0.0000 0.8952±0.0000

CGL-TNN 0.8705±0.0000 0.8668±0.0000 0.8752±0.0000 0.8683±0.0000 0.8495±0.0000 0.9333±0.0000 0.9333±0.0000
CGL 0.8945±0.0000 0.8914±0.0000 0.8975±0.0000 0.8883±0.0000 0.8774±0.0000 0.9476±0.0000 0.9476±0.0000

ORL
CGL-no-LRT 0.7050±0.0175 0.6509±0.0260 0.7696±0.0106 0.8944±0.0046 0.6976±0.0181 0.7789±0.0219 0.8056±0.0161

CGL-TNN 0.8506±0.0041 0.8363±0.0067 0.8654±0.0025 0.9418±0.0014 0.8471±0.0043 0.8918±0.0028 0.9042±0.0028
CGL 0.8584±0.0060 0.8446±0.0074 0.8727±0.0050 0.9454±0.0021 0.8551±0.0061 0.8996±0.0051 0.9074±0.0038

20newsgroups
CGL-no-LRT 0.5792±0.0000 0.4698±0.0000 0.7552±0.0000 0.6358±0.0000 0.4430±0.0000 0.6300±0.0000 0.6900±0.0000

CGL-TNN 0.9682±0.0000 0.9680±0.0000 0.9683±0.0000 0.9461±0.0000 0.9603±0.0000 0.9840±0.0000 0.9840±0.0000
CGL 0.9721±0.0000 0.9721±0.0000 0.9722±0.0000 0.9513±0.0000 0.9652±0.0000 0.9860±0.0000 0.9860±0.0000

100leaves
CGL-no-LRT 0.8481±0.0163 0.7772±0.0258 0.9338±0.0046 0.9642±0.0029 0.8466±0.0165 0.8705±0.0156 0.8866±0.0136

CGL-TNN 0.9413±0.0054 0.9264±0.0098 0.9571±0.0029 0.9809±0.0015 0.9407±0.0054 0.9623±0.0046 0.9647±0.0040
CGL 0.9431±0.0063 0.9276±0.0108 0.9590±0.0030 0.9818±0.0013 0.9425±0.0063 0.9625±0.0070 0.9646±0.0054

COIL20
CGL-no-LRT 0.7952±0.0194 0.7422±0.0250 0.8567±0.0141 0.9097±0.0076 0.7838±0.0206 0.7691±0.0225 0.8056±0.0156

CGL-TNN 0.8089±0.0019 0.7685±0.0060 0.8538±0.0071 0.9165±0.0046 0.7984±0.0020 0.8224±0.0046 0.8435±0.0058
CGL 0.8440±0.0005 0.8238±0.0004 0.8653±0.0005 0.9193±0.0000 0.8357±0.0005 0.8596±0.0003 0.8832±0.0003

handwritten
CGL-no-LRT 0.9525±0.0000 0.9519±0.0000 0.9532±0.0000 0.9456±0.0000 0.9473±0.0000 0.9760±0.0000 0.9760±0.0000

CGL-TNN 0.9590±0.0000 0.9581±0.0000 0.9599±0.0000 0.9549±0.0000 0.9545±0.0000 0.9795±0.0000 0.9795±0.0000
CGL 0.9554±0.0000 0.9549±0.0000 0.9559±0.0000 0.9491±0.0000 0.9505±0.0000 0.9775±0.0000 0.9775±0.0000

We introduce a weighted tensor nuclear norm by assigning
different singular values with different weights to improve the
flexibility of tensor nuclear norm in low rank approximation
problem. Furthermore, we unify the spectral embedding and
low rank tensor learning into a unified optimization framework
to achieve mutual promotion. Finally, the consensus similarity
graph can be constructed from multi-view normalized spectral
embedding matrices via an adaptive neighbor graph learning
manner. Extensive experiments on six datasets demonstrate
that the proposed method achieves state-of-the-art multi-view

clustering performance.
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